One-dimensional continua and inverse limits

Vladimír Špitalský

Matej Bel University, Banská Bystrica, Slovakia

March 18, 2014
Banská Bystrica

Developments in Mathematics
W.T. Ingram

William S. Mahavier

Inverse Limits

From Continua to Chaos

Contents

1. One-dimensional continua
2. Inverse limits
3. Applications
4. Open problems

One-dimensional continua

X is a continuum:

- X is a compact metric space
- X is connected
- A, B : open disjoint, $X=A \cup B \quad \Longrightarrow \quad A=\emptyset$ or $B=\emptyset$
- X is non-degenerate (only in this talk!)

One-dimensional continua

X is a continuum:

- X is a compact metric space
- X is connected
- A, B : open disjoint, $X=A \cup B \quad \Longrightarrow \quad A=\emptyset$ or $B=\emptyset$
- X is non-degenerate (only in this talk!)

A continuum X is one-dimensional if

- X has a one-dimensional cover by arbitrarily small open sets
- a cover $\mathcal{U}=\left\{U_{1}, \ldots, U_{m}\right\}$ is one-dimensional (1D) if every $x \in X$ belongs to at most 2 sets of \mathcal{U}

One-dimensional continua and inverse limits

$\left\llcorner_{1}\right.$. One-dimensional continua

Arc

One-dimensional continua and inverse limits

1. One-dimensional continua

Arc

One-dimensional continua and inverse limits

- 1. One-dimensional continua

Arc

- chain

One-dimensional continua and inverse limits
L_{1}. One-dimensional continua

Circle

One-dimensional continua and inverse limits

1. One-dimensional continua

Circle

One-dimensional continua and inverse limits

1. One-dimensional continua

Circle

- circle-chain

Topologist's sine curve - graph of $x \mapsto \sin (1 / x)$

- not locally connected
- not arcwise connected

One-dimensional continua and inverse limits

- 1 . One-dimensional continua

Topologist's sine curve - graph of $x \mapsto \sin (1 / x)$

Topologist's sine curve - graph of $x \mapsto \sin (1 / x)$

- chain

Warsaw circle

- not locally connected
- arcwise connected
- separates the plane

One-dimensional continua and inverse limits

1. One-dimensional continua

Warsaw circle

One-dimensional continua and inverse limits

1. One-dimensional continua

Warsaw circle

- circle-chain

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1D cover \mathcal{U} : an undirected graph with

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1 D cover \mathcal{U} : an undirected graph with

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

A one-dimensional continuum X is arc-like $\quad \forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is an arc circle-like $\forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is a circle tree-like $\quad \forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is a tree

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1D cover \mathcal{U} : an undirected graph with

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

A one-dimensional continuum X is arc-like $\quad \forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is an arc circle-like $\forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is a circle tree-like $\quad \forall \varepsilon>0 \exists 1 \mathrm{D} \varepsilon$-cover \mathcal{U} s.t. $N(\mathcal{U})$ is a tree

Examples

- arc-like continua: arc, topologist's sine curve
- circle-like continua: circle, Warsaw circle
- tree-like continua: trees, Cantor fan

One-dimensional continua and inverse limits

$\left\llcorner_{1}\right.$. One-dimensional continua

Knaster buckethandle

Knaster buckethandle

- arc-like
- proper subcontinua: arcs
- indecomposable
- there are no proper subcontinua A, B s.t. $X=A \cup B$

One-dimensional continua and inverse limits

1. One-dimensional continua

Pseudo-arc

Pseudo-arc

- arc-like
- homogeneous
- proper subcontinua: pseudo-arcs
- hereditarily indecomposable
- every subcontinuum of the pseudo-arc is indecomposable
- typical continuum in \mathbb{R}^{n}
- in the space of all subcontinua

One-dimensional continua and inverse limits

1. One-dimensional continua

Pseudo-circle

1. One-dimensional continua

Pseudo-circle

- circle-like
- proper subcontinua: pseudo-arcs
- not homogeneous

2. Inverse limits

1. One-dimensional continua
2. Inverse limits

Cartesian product

- $\left(X_{n}, d_{n}\right)(n=1,2, \ldots)$: metric spaces with $\operatorname{diam}\left(X_{n}\right) \leq 1$

Cartesian product $X=\prod_{n=1}^{\infty} X_{n}$

$$
X=\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \in X_{n}\right\}
$$

Metric d on X :

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\sum_{n=1}^{\infty} \frac{d_{n}\left(x_{n}, y_{n}\right)}{2^{n}}
$$

- every X_{n} is a compactum $\Rightarrow X$ is a compactum
- every X_{n} is a continuum $\Rightarrow X$ is a continuum

Inverse limit

Inverse sequence $\left\{X_{n}, f_{n}\right\}_{n=1}^{\infty}$

- $f_{n}: X_{n+1} \rightarrow X_{n}$ continuous

$$
X_{1} \stackrel{f_{1}}{\leftarrow} X_{2} \stackrel{f_{2}}{\leftrightarrows} X_{3} \stackrel{f_{3}}{\leftrightarrows} \ldots \quad \stackrel{f_{n-1}}{\leftarrow} X_{n} \stackrel{f_{n}}{\leftarrow} X_{n+1} \stackrel{f_{n+1}}{\leftrightarrows} \ldots
$$

Inverse limit

Inverse sequence $\left\{X_{n}, f_{n}\right\}_{n=1}^{\infty}$

- $f_{n}: X_{n+1} \rightarrow X_{n}$ continuous

$$
X_{1} \stackrel{f_{1}}{\leftarrow} X_{2} \stackrel{f_{2}}{\leftarrow} X_{3} \stackrel{f_{3}}{\leftrightarrows} \ldots f_{n}^{f_{n-1}} X_{n} \stackrel{f_{n}}{\leftarrow} X_{n+1} \stackrel{f_{n+1}}{\leftarrow} \ldots
$$

Inverse limit $X_{\infty}=\underset{\leftrightarrows}{\lim \left(X_{n}, f_{n}\right)}$

$$
x_{\infty}=\left\{\left(x_{n}\right) \in \prod X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for every } n\right\}
$$

Inverse limit

Inverse sequence $\left\{X_{n}, f_{n}\right\}_{n=1}^{\infty}$

- $f_{n}: X_{n+1} \rightarrow X_{n}$ continuous

$$
X_{1} \stackrel{f_{1}}{\leftarrow} X_{2} \stackrel{f_{2}}{\leftrightarrows} X_{3} \stackrel{f_{3}}{\leftrightarrows} \ldots \quad \stackrel{f_{n-1}}{\leftarrow} X_{n} \stackrel{f_{n}}{\leftrightarrows} X_{n+1} \stackrel{f_{n+1}}{\leftrightarrows} \ldots
$$

Inverse limit $X_{\infty}=\underset{\longleftarrow}{\lim }\left(X_{n}, f_{n}\right)$

$$
X_{\infty}=\left\{\left(x_{n}\right) \in \prod X_{n}: f_{n}\left(x_{n+1}\right)=x_{n} \text { for every } n\right\}
$$

- every X_{n} is a compactum $\Rightarrow X_{\infty}$ is a compactum
- every X_{n} is a continuum $\Rightarrow X_{\infty}$ is a continuum
$L_{2 .}$ Inverse limits

Inverse limit - Example 1

$$
\begin{aligned}
& x_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1] \\
& f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\
1 & \text { if } x \geq 1 / 2\end{cases}
\end{aligned}
$$

Inverse limit - Example 1

$$
X_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1]
$$

$$
f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\ 1 & \text { if } x \geq 1 / 2\end{cases}
$$

$\lim ([0,1], f): \operatorname{arc}$

- the same is true for every monotone f
$L_{2 .}$ Inverse limits

Inverse limit - Example 2

$$
\begin{aligned}
X_{n} \equiv[0,1] & f_{n} \equiv f:[0,1] \rightarrow[0,1] \\
& f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\
3 / 2-x & \text { if } x \geq 1 / 2\end{cases}
\end{aligned}
$$

Inverse limit - Example 2

$$
\begin{aligned}
x_{n} \equiv[0,1] & f_{n} \equiv f:[0,1] \rightarrow[0,1] \\
& f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\
3 / 2-x & \text { if } x \geq 1 / 2\end{cases}
\end{aligned}
$$

$\lim ([0,1], f)$: topologist's sine curve

Inverse limit - Example 3

$$
\begin{aligned}
& x_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1] \\
& f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\
2-2 x & \text { if } x \geq 1 / 2\end{cases}
\end{aligned}
$$

Inverse limit - Example 3

$$
\begin{aligned}
& x_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1] \\
& f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\
2-2 x & \text { if } x \geq 1 / 2\end{cases}
\end{aligned}
$$

$\underset{\leftrightarrows}{\lim ([0,1], f): \text { Knaster buckethandle }}$

Inverse limit — Example 4 (Henderson 1964)

$$
x_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1]
$$

- C^{∞} function constructed as follows:
- start with $g(x)=x^{2}$
- notch its graph with an infinite set of non-intersecting v 's which accumulate at $(1,1)$

Inverse limit — Example 4 (Henderson 1964)

$$
x_{n} \equiv[0,1] \quad f_{n} \equiv f:[0,1] \rightarrow[0,1]
$$

- C^{∞} function constructed as follows:
- start with $g(x)=x^{2}$
- notch its graph with an infinite set of non-intersecting v 's which accumulate at $(1,1)$
$\underset{\longleftarrow}{\lim ([0, ~ 1], f): \text { pseudo-arc }}$

One-dimensional continua \equiv inverse limits of graphs

X is a one-dimensional continuum
\Longleftrightarrow there is an inverse sequence $\left\{X_{n}, f_{n}\right\}$ s.t.

- X_{n} is a graph
- $f_{n}: X_{n+1} \rightarrow X_{n}$ is a continuous surjection
- X is homeomorphic to $\lim _{\longleftarrow}\left(X_{n}, f_{n}\right)$

One-dimensional continua \equiv inverse limits of graphs

X is a one-dimensional continuum
\Longleftrightarrow there is an inverse sequence $\left\{X_{n}, f_{n}\right\}$ s.t.

- X_{n} is a graph
- $f_{n}: X_{n+1} \rightarrow X_{n}$ is a continuous surjection
- X is homeomorphic to $\lim _{\longleftarrow}\left(X_{n}, f_{n}\right)$
arc-like continua \equiv inverse limits of arcs $\left(X_{n}=[0,1]\right)$ circle-like continua \equiv inverse limits of circles $\left(X_{n}=\mathbb{S}^{1}\right)$
tree-like continua \equiv inverse limits of trees
one-dim. continua \equiv inverse limits of graphs

3. Applications

1. One-dimensional continua
2. Inverse limits
3. Applications

4. Open problems

Applications

Ingram, Mahavier (2011)

- Inverse limits have played a crucial role in the development of the theory of continua in the past 50 years or so. Particularly useful is their inherent ability to produce complicated spaces from simple ones. . .

Constructions of complicated continua

Anderson, Choquet (1959); Andrews (1961)

- there is a planar tree-like (arc-like) continuum s.t. every subcontinua $A \neq B$ of X are not homeomorphic

Cook (1966)

- there is a continuum X s.t. every continuous $f: X \rightarrow X$ is either constant or identity

Bellamy (1979)

- there is a tree-like continuum X without the fixed point property

Simple description of continua

- Knaster buckethandle

$$
X=\lim _{\longleftarrow}([0,1], f) \quad f(x)= \begin{cases}2 x & \text { if } x \leq 1 / 2 \\ 2-2 x & \text { if } x \geq 1 / 2\end{cases}
$$

- pseudoarc

$$
X=\underset{\leftarrow}{\lim }([0,1], f) \quad f(x)=x^{2}-\sum_{n} g_{n}(x)
$$

- any arc-like continuum

$$
X=\lim _{\longleftarrow}\left([0,1], f_{n}\right) \quad f_{n}:[0,1] \rightarrow[0,1]
$$

Simplified proofs of properties of continua

Theorem
Knaster buckethandle is indecomposable.

Simplified proofs of properties of continua

Theorem
Knaster buckethandle is indecomposable.
Proof.

- suppose not: $X=A \cup B$, where A, B - proper subcontinua
- A_{n}, B_{n} : projections of A, B onto the n-th coordinate
- A_{n}, B_{n} : closed intervals, $A_{n} \cup B_{n}=[0,1]$
- $\exists m: A_{m} \neq[0,1] \neq B_{m}$
- otherwise $A=X$ or $B=X$
- we may assume that $0 \in A_{m+1}$
- then $1 / 2 \notin A_{m+1}$ and $1 \notin A_{m+1}$
- otherwise $1 \in A_{m} \Rightarrow A_{m}=[0,1]$
- hence $1 / 2,1 \in B_{m+1}$ and so $B_{m}=[0,1]$ - a contradiction

Connections with dynamics

Handel (1982)

- the pseudocircle is an attracting minimal set of a plane C^{∞} diffeomorphism

Barge, Martin (1990)

- any arc-like continuum $\lim ([0,1], f)$ is a global attractor of a plane homeomorphism

Natural extension of a continuous map $f: X \rightarrow X$

$$
\begin{aligned}
& \sigma_{f}: \underset{\leftarrow}{\lim }(X, f) \rightarrow \underset{\leftarrow}{\leftarrow} \lim (X, f) \\
& \sigma_{f}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots\right)
\end{aligned}
$$

- always a homeomorphism
- shares many properties/characteristics with f
- transitivity, minimality, entropy, ...

One-dimensional continua and inverse limits

$\left\llcorner_{4}\right.$. Open problems

4. Open problems

1. One-dimensional continua
2. Inverse limits
3. Applications
4. Open problems

Plane fixed point problem

Does a continuous function taking a non-separating plane continuum into itself always have a fixed point?

- non-separating plane continuum:
- plane continuum the complement of which is connected
- intersection of a nested sequence of disks

Plane fixed point problem

Does a continuous function taking a non-separating plane continuum into itself always have a fixed point?

- Bing (1969)
. . . the most interesting outstanding problem in plane topology.
- Hagopian (1997)

An affirmative answer would provide a beautiful generalization of the $2 D$ version of Brouwer's fixed point theorem

Plane fixed point problem

Short history

- Ayres (1930)
- Borsuk $(1932,1954)$
- Hamilton $(1938,1951)$
- Kelley (1939)
- Cartwright, Littlewood (1951)
- Bing $(1951,1969)$
- Ward (1959)
- Young (1960)
- Bell $(1967,1978)$

Plane fixed point problem

Short history

- Sieklucki (1968)
- Iliadis (1970)
- Hagopian (1971, 1988, 1996, 2007)
- Fugate, Mohler (1977)
- Bellamy (1979)
- Minc $(1990,1999)$
- Akis (1999)
- Mayer, Oversteegen, Tymchatyn (2003)

One-dimensional continua and inverse limits

L_{4}. Open problems

Plane fixed point problem

Short history

- Blokh, Fokkink, Mayer, Oversteegen, Tymchatyn (2013)

MEMOIRS American of the athematical Society
Fixed Point Theorems for Plane Continua with Applications Alexander M. Blokh Robbert J. Fokkink John C. Mayer Lex G. Oversteegen E. D. Tymachtyn

American Mathematical Society

Auslander's problem

- Is there a non-separating plane continuum admitting a minimal dynamical system?

Auslander's problem

- Is there a non-separating plane continuum admitting a minimal dynamical system?

Connected question:

- Is there a tree-like continuum admitting a minimal dynamical system?

References

Q J. J. Charatonik, P. Krupski, P. Pyrih:
Examples in Continuum Theory (2003)
Q W. T. Ingram, W. S. Mahavier: Inverse Limits (from Continua to Chaos) (2011)
(K. Kuratowski:
Topology, Vol II (1968)
© S. Macías:
Topics on Continua (2005)
© S. B. Nadler:
Continuum theory (1992)
© S. B. Nadler:
The fixed point property for continua (2005)

Thanks for your attention!

