Vladimír Špitalský

Matej Bel University, Banská Bystrica, Slovakia

March 18, 2014 Banská Bystrica

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Developments in Mathematics

W.T. Ingram William S. Mahavier

Inverse Limits

From Continua to Chaos

■▶ ▲ 臣 ▶ ▲ 臣 → 의 ۹ ⊙ ۹ ⊙

Contents

1. One-dimensional continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- 2. Inverse limits
- 3. Applications
- 4. Open problems

-1. One-dimensional continua

One-dimensional continua

X is a continuum:

- X is a compact metric space
- X is connected
 - A, B: open disjoint, $X = A \cup B \implies A = \emptyset$ or $B = \emptyset$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

X is non-degenerate (only in this talk!)

-1. One-dimensional continua

One-dimensional continua

X is a continuum:

- X is a compact metric space
- X is connected
 - A, B: open disjoint, $X = A \cup B \implies A = \emptyset$ or $B = \emptyset$
- X is non-degenerate (only in this talk!)
- A continuum X is one-dimensional if
 - ► X has a one-dimensional cover by arbitrarily small open sets
 - ► a cover U = {U₁,..., U_m} is one-dimensional (1D) if every x ∈ X belongs to at most 2 sets of U

(ロ)、(型)、(E)、(E)、 E のQで

└─1. One-dimensional continua

Arc

-1. One-dimensional continua

Arc

-1. One-dimensional continua

Arc

-1. One-dimensional continua

Circle

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

-1. One-dimensional continua

◆□ > < 個 > < E > < E > E の < @</p>

-1. One-dimensional continua

► circle-chain

-1. One-dimensional continua

Topologist's sine curve — graph of $x \mapsto sin(1/x)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- not locally connected
- not arcwise connected

-1. One-dimensional continua

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

-1. One-dimensional continua

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

-1. One-dimensional continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- not locally connected
- arcwise connected
- separates the plane

-1. One-dimensional continua

-1. One-dimensional continua

1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1D cover \mathcal{U} : an undirected graph with

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

-1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1D cover \mathcal{U} : an undirected graph with

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

ション ふゆ く 山 マ チャット しょうくしゃ

-1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve $N(\mathcal{U})$ of a 1D cover \mathcal{U} : an undirected graph with

- vertices: the sets $U \in \mathcal{U}$
- edges: $\{U, V\}$ with $U \cap V \neq \emptyset$

Examples

- arc-like continua: arc, topologist's sine curve
- circle-like continua: circle, Warsaw circle
- ► tree-like continua: trees, Cantor fan

-1. One-dimensional continua

Knaster buckethandle

-1. One-dimensional continua

Knaster buckethandle

- arc-like
- proper subcontinua: arcs
- indecomposable
 - ► there are no proper subcontinua A, B s.t. $X = A \cup B$

-1. One-dimensional continua

Pseudo-arc

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

1. One-dimensional continua

Pseudo-arc

- arc-like
- homogeneous
- proper subcontinua: pseudo-arcs
- hereditarily indecomposable
 - every subcontinuum of the pseudo-arc is indecomposable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- typical continuum in \mathbb{R}^n
 - in the space of all subcontinua

-1. One-dimensional continua

-1. One-dimensional continua

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 約९종

- circle-like
- proper subcontinua: pseudo-arcs
- not homogeneous

- 2. Inverse limits
- 2. Inverse limits

1. One-dimensional continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- 2. Inverse limits
- 3. Applications
- 4. Open problems

2. Inverse limits

Cartesian product

• (X_n, d_n) (n = 1, 2, ...): metric spaces with diam $(X_n) \le 1$

Cartesian product $X = \prod_{n=1}^{\infty} X_n$

$$X = \{(x_n)_{n=1}^\infty : x_n \in X_n\}$$

Metric *d* on *X*:

$$d((x_n)_n, (y_n)_n) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

• every X_n is a compactum $\Rightarrow X$ is a compactum

• every X_n is a continuum $\Rightarrow X$ is a continuum

2. Inverse limits

Inverse limit

Inverse sequence $\{X_n, f_n\}_{n=1}^{\infty}$

• $f_n: X_{n+1} \to X_n$ continuous

$$X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \dots \qquad \xleftarrow{f_{n-1}} X_n \xleftarrow{f_n} X_{n+1} \xleftarrow{f_{n+1}} \dots$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

2. Inverse limits

Inverse limit

Inverse sequence $\{X_n, f_n\}_{n=1}^{\infty}$ • $f_n : X_{n+1} \to X_n$ continuous $X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \dots \xleftarrow{f_{n-1}} X_n \xleftarrow{f_n} X_{n+1} \xleftarrow{f_{n+1}} \dots$

Inverse limit $X_{\infty} = \lim_{\longleftarrow} (X_n, f_n)$

$$X_{\infty} = \{(x_n) \in \prod X_n : f_n(x_{n+1}) = x_n \text{ for every } n\}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

-2. Inverse limits

Inverse limit

Inverse sequence $\{X_n, f_n\}_{n=1}^{\infty}$ • $f_n : X_{n+1} \to X_n$ continuous $X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} \dots \xleftarrow{f_{n-1}} X_n \xleftarrow{f_n} X_{n+1} \xleftarrow{f_{n+1}} \dots$

Inverse limit $X_{\infty} = \lim_{\longleftarrow} (X_n, f_n)$

$$X_{\infty} = \{(x_n) \in \prod X_n : f_n(x_{n+1}) = x_n \text{ for every } n\}$$

every X_n is a compactum ⇒ X_∞ is a compactum
 every X_n is a continuum ⇒ X_∞ is a continuum

-2. Inverse limits

Inverse limit — Example 1 $X_n \equiv [0,1]$ $f_n \equiv f : [0,1] \to [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2\\ 1 & \text{if } x \ge 1/2 \end{cases}$ 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

2. Inverse limits

Inverse limit — Example 1 $X_n \equiv [0,1]$ $f_n \equiv f : [0,1] \to [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2\\ 1 & \text{if } x \ge 1/2 \end{cases}$ 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

 $\lim([0,1], f)$: arc

the same is true for every monotone f

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

-2. Inverse limits

Inverse limit — Example 2 $X_n \equiv [0,1] \qquad f_n \equiv f : [0,1] \rightarrow [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2 \\ 3/2 - x & \text{if } x \ge 1/2 \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

-2. Inverse limits

Inverse limit — Example 2 $X_n \equiv [0,1] \qquad f_n \equiv f : [0,1] \rightarrow [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2 \\ 3/2 - x & \text{if } x \ge 1/2 \end{cases}$

 $\lim_{\longleftarrow} ([0,1], f): \text{ topologist's sine curve}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

-2. Inverse limits

Inverse limit — Example 3 $X_n \equiv [0,1] \qquad f_n \equiv f : [0,1] \rightarrow [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2\\ 2-2x & \text{if } x \ge 1/2 \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. Inverse limits

Inverse limit — Example 3 $X_n \equiv [0,1] \qquad f_n \equiv f : [0,1] \rightarrow [0,1]$ $f(x) = \begin{cases} 2x & \text{if } x \le 1/2\\ 2 - 2x & \text{if } x \ge 1/2 \end{cases}$

 $\lim_{\leftarrow} ([0,1], f)$: Knaster buckethandle

2. Inverse limits

Inverse limit — Example 4 (Henderson 1964)

$$X_n \equiv [0,1] \qquad f_n \equiv f : [0,1] \rightarrow [0,1]$$

- C^{∞} function constructed as follows:
 - start with $g(x) = x^2$
 - notch its graph with an infinite set of non-intersecting v's which accumulate at (1, 1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Inverse limits

Inverse limit — Example 4 (Henderson 1964)

 $X_n \equiv [0,1]$ $f_n \equiv f : [0,1] \to [0,1]$

- C^{∞} function constructed as follows:
 - start with $g(x) = x^2$
 - notch its graph with an infinite set of non-intersecting v's which accumulate at (1,1)

 $\lim_{t \to 0} ([0,1], f)$: pseudo-arc

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

-2. Inverse limits

One-dimensional continua \equiv inverse limits of graphs

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- X is a one-dimensional continuum
- \iff there is an inverse sequence $\{X_n, f_n\}$ s.t.
 - X_n is a graph
 - $f_n: X_{n+1} \rightarrow X_n$ is a continuous surjection
 - X is homeomorphic to $\lim_{\leftarrow} (X_n, f_n)$

2. Inverse limits

One-dimensional continua \equiv inverse limits of graphs

- X is a one-dimensional continuum
 - \iff there is an inverse sequence $\{X_n, f_n\}$ s.t.
 - X_n is a graph
 - $f_n: X_{n+1} \rightarrow X_n$ is a continuous surjection
 - X is homeomorphic to $\lim_{n \to \infty} (X_n, f_n)$

arc-like continua \equiv circle-like continua \equiv tree-like continua \equiv one-dim. continua \equiv

- \equiv inverse limits of arcs $(X_n = [0, 1])$
- \equiv inverse limits of circles $(X_n = \mathbb{S}^1)$
- tree-like continua \equiv inverse limits of trees
- one-dim. continua \equiv inverse limits of graphs

- -3. Applications
- 3. Applications

1. One-dimensional continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- 2. Inverse limits
- 3. Applications
- 4. Open problems

-3. Applications

Applications

Ingram, Mahavier (2011)

Inverse limits have played a crucial role in the development of the theory of continua in the past 50 years or so. Particularly useful is their inherent ability to produce complicated spaces from simple ones...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

-3. Applications

Constructions of complicated continua

Anderson, Choquet (1959); Andrews (1961)

► there is a planar tree-like (arc-like) continuum s.t. every subcontinua A ≠ B of X are not homeomorphic

Cook (1966)

► there is a continuum X s.t. every continuous f : X → X is either constant or identity

Bellamy (1979)

there is a tree-like continuum X without the fixed point property

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

-3. Applications

Simple description of continua

Knaster buckethandle

$$X = \varprojlim([0,1],f) \qquad f(x) = \begin{cases} 2x & \text{if } x \le 1/2\\ 2-2x & \text{if } x \ge 1/2 \end{cases}$$

► pseudoarc

$$X = \lim_{\longleftarrow} ([0,1], f) \qquad f(x) = x^2 - \sum_n g_n(x)$$

any arc-like continuum

$$X = \varprojlim([0,1],f_n) \qquad f_n: [0,1] \to [0,1]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

-3. Applications

Simplified proofs of properties of continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem *Knaster buckethandle is indecomposable.*

-3. Applications

Simplified proofs of properties of continua

Theorem Knaster buckethandle is indecomposable.

Proof.

- ▶ suppose not: $X = A \cup B$, where A, B proper subcontinua
- A_n, B_n : projections of A, B onto the *n*-th coordinate

• A_n, B_n : closed intervals, $A_n \cup B_n = [0, 1]$

- $\blacktriangleright \exists m: A_m \neq [0,1] \neq B_m$
 - otherwise A = X or B = X
- we may assume that $0 \in A_{m+1}$
- then $1/2 \notin A_{m+1}$ and $1 \notin A_{m+1}$
 - otherwise $1 \in A_m \Rightarrow A_m = [0, 1]$
- ▶ hence $1/2, 1 \in B_{m+1}$ and so $B_m = [0, 1]$ a contradiction

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

-3. Applications

Connections with dynamics

Handel (1982)

- ► the pseudocircle is an attracting minimal set of a plane C[∞] diffeomorphism
- Barge, Martin (1990)
 - ▶ any arc-like continuum lim([0, 1], f) is a global attractor of a plane homeomorphism

Natural extension of a continuous map $f: X \to X$

 $\sigma_f: \varprojlim(X, f) \to \varprojlim(X, f)$

 $\sigma_f(x_1, x_2, x_3, \dots) = (f(x_1), f(x_2), f(x_3), \dots)$

- always a homeomorphism
- shares many properties/characteristics with f
 - transitivity, minimality, entropy, ...

4. Open problems

4. Open problems

1. One-dimensional continua

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- 2. Inverse limits
- 3. Applications
- 4. Open problems

4. Open problems

Plane fixed point problem

Does a continuous function taking a non-separating plane continuum into itself always have a fixed point?

non-separating plane continuum:

plane continuum the complement of which is connected

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

intersection of a nested sequence of disks

4. Open problems

Plane fixed point problem

Does a continuous function taking a non-separating plane continuum into itself always have a fixed point?

- Bing (1969)
 - ... the most interesting outstanding problem in plane topology.
- Hagopian (1997)
 An affirmative answer would provide a beautiful generalization of the 2D version of Brouwer's fixed point theorem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

4. Open problems

Plane fixed point problem

Short history

- Ayres (1930)
- Borsuk (1932, 1954)
- Hamilton (1938, 1951)
- Kelley (1939)
- Cartwright, Littlewood (1951)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Bing (1951, 1969)
- Ward (1959)
- Young (1960)
- Bell (1967, 1978)

4. Open problems

Plane fixed point problem

Short history

- Sieklucki (1968)
- Iliadis (1970)
- Hagopian (1971, 1988, 1996, 2007)
- Fugate, Mohler (1977)
- Bellamy (1979)
- Minc (1990, 1999)
- Akis (1999)
- Mayer, Oversteegen, Tymchatyn (2003)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

4. Open problems

Plane fixed point problem

Short history

Blokh, Fokkink, Mayer, Oversteegen, Tymchatyn (2013)

4. Open problems

Auslander's problem

Is there a non-separating plane continuum admitting a minimal dynamical system?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4. Open problems

Auslander's problem

Is there a non-separating plane continuum admitting a minimal dynamical system?

Connected question:

Is there a tree-like continuum admitting a minimal dynamical system?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

References

📎 W. T. Ingram, W. S. Mahavier: Inverse Limits (from Continua to Chaos) (2011)

🦫 K. Kuratowski:

Topology, Vol II (1968)

S. Macías:

Topics on Continua (2005)

S. B. Nadler:

Continuum theory (1992)

S. B. Nadler:

The fixed point property for continua (2005)

(日本) (日本) (日本) (日本)

Thanks for your attention!