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One-dimensional continua

X is a continuum:

» X is a compact metric space

» X is connected

» A B: open disjoint, X =AUB =— A=0QorB=10

» X is non-degenerate (only in this talk!)
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1. One-dimensional continua

One-dimensional continua

X is a continuum:

» X is a compact metric space

» X is connected
» A B: open disjoint, X =AUB =— A=0QorB=10

» X is non-degenerate (only in this talk!)

A continuum X is one-dimensional if
» X has a one-dimensional cover by arbitrarily small open sets

» acover U = {U,...,Un} is one-dimensional (1D) if
every x € X belongs to at most 2 sets of U
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Circle
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1. One-dimensional continua

Circle .
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1. One-dimensional continua

Topologist's sine curve — graph of x — sin(1/x)

» not locally connected

» not arcwise connected
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Topologist's sine curve — graph of x ~ sin(1/x)

» chain

DA
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1. One-dimensional continua

Warsaw circle

» not locally connected
» arcwise connected

» separates the plane
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1. One-dimensional continua

Warsaw circle
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1. One-dimensional continua

Warsaw circle
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1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve N(U/) of a 1D cover U: an undirected graph with
> vertices: the sets U € U

» edges: {U,V} with UNV #0
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1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve N(U/) of a 1D cover U: an undirected graph with
> vertices: the sets U € U
» edges: {U,V} with UNV £

A one-dimensional continuum X is
arc-like Ve >0 3 1D e-cover U s.t. N(U) is an arc

circle-like Ve >0 3 1D e-cover U s.t. N(U) is a circle
tree-like Ve > 0 3 1D e-cover U s.t. N(Uf) is a tree
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L1. One-dimensional continua

Arc-like, circle-like and tree-like continua

Nerve N(U/) of a 1D cover U: an undirected graph with
> vertices: the sets U € U
» edges: {U,V} with UNV £

A one-dimensional continuum X is
arc-like Ve > 0 3 1D e-cover U s.t. N(U) is an arc

circle-like Ve >0 3 1D e-cover U s.t. N(U) is a circle
tree-like Ve > 0 3 1D e-cover U s.t. N(Uf) is a tree

Examples

» arc-like continua: arc, topologist's sine curve
» circle-like continua: circle, Warsaw circle

> tree-like continua: trees, Cantor fan
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Knaster buckethandle
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1. One-dimensional continua

Knaster buckethandle

> arc-like

> proper subcontinua: arcs
» indecomposable

» there are no proper subcontinua A, B s.t. X

=

= AUﬁB

N
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Pseudo-arc
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1. One-dimensional continua

Pseudo-arc

arc-like

homogeneous
proper subcontinua: pseudo-arcs
hereditarily indecomposable
» every subcontinuum of the pseudo-arc is indecomposable
typical continuum in R”
» in the space of all subcontinua
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L. One-dimensional continua

Pseudo-circle
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L-1. One-d I cont

Pseudo-circle

> circle-like

» proper subcontinua: pseudo-arcs
» not homogeneous
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2. Inverse limits

2. Inverse limits
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L2, Inverse limits

Cartesian product
> (Xn,dp) (n=1,2,...): metric spaces with diam(X,) <1

o0
Cartesian product X = [] X,

n=1
X ={(xn)nZ1 : xn € Xn}
Metric d on X:

o0

d((xn)n, (yn)n) = > #

n=1

> every X, is a compactum = X is a compactum

> every X, is a continuum = X is a continuum
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Inverse limit

Inverse sequence {Xp, f,}72;
> fp: Xp11 — X, continuous

f f; f:
X1<;X2<LX3<L

o f,
(n—l X, Xnt1

fn+1
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Inverse limit

Inverse sequence { X, f}5°

> fp: Xp11 — X, continuous

f f; f:
)(1(;)<2(i)<3<i

o f,
20X,

fn+1
Xn+1

‘—

Inverse limit Xo = lim(X,, fp)
<—

Xoo = {(Xn) € HXn . fn(Xn+1) = x, for every n}

N
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Inverse limit

Inverse sequence { X, f}5°

> fp: Xp11 — X, continuous
f f3 f2
X1 (; X2 (i X3 <i

fol £
n 1Xn

<—

Xn+1
Inverse limit Xo = lim(X,, fp)
oo — 1

Xoo ={(xn) € HXn : fo(Xnt1) = x, for every n}

> every X, is a compactum = X, is a compactum

> every X, is a continuum = X, is a continuum

fn+1

‘—
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2. Inverse limits

Inverse limit — Example 1

X, =[0,1]
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fp,=1:10,1] — [0, 1]

f(x) = {

2x ifx<1/2
1 ifx>1/2
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2. Inverse limits

Inverse limit — Example 1
X,=[0,1] £ =f:[0,1 — [0,1]

i <
Flx) = 2x !fx_1/2
1 ifx>1/2
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|Lm([0, 1], f): arc

» the same is true for every monotone f
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2. Inverse limits

Inverse limit — Example 2

X,=[0,1]  f=f:[0,1] = [0,1]

fla = {372 — X

1.0

if x <1/2
if x>1/2

0.6 0.8
I

0.4

02
I

0.0



One-dimensional continua and inverse limits
2. Inverse limits

Inverse limit — Example 2
X, =10,1]

fp,=1:10,1] — [0, 1]

OF {ifg s
lim

if x >1/2
([0,1], f): topologist's sine curve
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2. Inverse limits

Inverse limit — Example 3
X,=1[0,1]  f=f:[0,1] - [0,1]

Flx) = {2X

2 —2x

1.0

if x <1/2
if x> 1/2
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Inverse limit — Example 3
X, =10,1]

fp,=1:10,1] — [0, 1]

i <
F(x) = {2X if x<1/2
2 —2x
lim
Pt

if x >1/2
([0,1], f): Knaster buckethandle
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L2, Inverse limits

Inverse limit — Example 4 (Henderson 1964)

X, =[0,1] fp,=1:10,1] — [0, 1]
» (C° function constructed as follows:
> start with g(x) = x?
» notch its graph with an infinite set of non-intersecting v's
which accumulate at (1,1)
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2. Inverse limits

Inverse limit — Example 4 (Henderson 1964)

X, =[0,1] fp,=1:10,1] — [0, 1]
» (C° function constructed as follows:
> start with g(x) = x?
» notch its graph with an infinite set of non-intersecting v's
which accumulate at (1,1)

([0,1], f): pseudo-arc
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2. Inverse limits

One-dimensional continua = inverse limits of graphs
X is a one-dimensional continuum

<= there is an inverse sequence { X, f,} s.t
» X, is a graph

» f,: Xhi1 — X, is a continuous surjection
» X is homeomorphic to lim(X,, f,)
F
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L2, Inverse limits

One-dimensional continua = inverse limits of graphs
X is a one-dimensional continuum
<= there is an inverse sequence { X, f,} s.t.
» X, is a graph
» f,: Xhi1 — X, is a continuous surjection

» X is homeomorphic to lim(X,, f,)
—

arc-like continua = inverse limits of arcs (X, = [0,1])
circle-like continua = inverse limits of circles (X, = S!)
tree-like continua inverse limits of trees

one-dim. continua = inverse limits of graphs
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Applications

Ingram, Mahavier (2011)

» Inverse limits have played a crucial role in the development of
the theory of continua in the past 50 years or so. Particularly

useful is their inherent ability to produce complicated spaces
from simple ones. . .
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L3, Applications

Constructions of complicated continua
Anderson, Choquet (1959); Andrews (1961)

» there is a planar tree-like (arc-like) continuum s.t. every
subcontinua A # B of X are not homeomorphic

Cook (1966)

» there is a continuum X s.t. every continuous f : X — X is
either constant or identity

Bellamy (1979)

» there is a tree-like continuum X without the fixed point
property
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Simple description of continua

» Knaster buckethandle

X = lim([0,1], f) a@:{”

if x <1/2
2—-2x ifx>1/2
» pseudoarc
— i — 2
X =lim([0,1],f)  f(x) =x ;gn(X)
> any arc-like continuum

X =lim([0,1],£) £ :[0,1] = [0,1]
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Simplified proofs of properties of continua
Theorem

Knaster buckethandle is indecomposable.
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L3, Applications

Simplified proofs of properties of continua

Theorem
Knaster buckethandle is indecomposable.

Proof.

» suppose not: X = AU B, where A, B — proper subcontinua
» A,, Bn: projections of A, B onto the n-th coordinate

» A,, B, closed intervals, A, U B, =[0,1]
Im: Ap #(0,1] # B

» otherwise A= X or B=X

v

» we may assume that 0 € A, 11
then 1/2 ¢ A1 and 1 € Api
» otherwise 1 € Ay, = A = [0,1]

v

v

hence 1/2,1 € B, 41 and so B, = [0, 1] — a contradiction
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L3, Applications

Connections with dynamics

Handel (1982)
» the pseudocircle is an attracting minimal set of a plane C*
diffeomorphism

Barge, Martin (1990)
» any arc-like continuum |i<_m([0, 1], f) is a global attractor of a

plane homeomorphism

Natural extension of a continuous map f : X — X
or: h(_m(X, f)— I|<_m(X, f)
O’f(Xl,XQ,X3, .. ) = (f(Xl), f(Xg), f(X3), . )

» always a homeomorphism
» shares many properties/characteristics with f
» transitivity, minimality, entropy, ...
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La. Open problems

Plane fixed point problem

Does a continuous function taking a non-separating plane
continuum into itself always have a fixed point?

» non-separating plane continuum:

» plane continuum the complement of which is connected
» intersection of a nested sequence of disks
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La. Open problems

Plane fixed point problem

Does a continuous function taking a non-separating plane
continuum into itself always have a fixed point?

» Bing (1969)
... the most interesting outstanding problem in plane topology.

» Hagopian (1997)
An affirmative answer would provide a beautiful generalization
of the 2D version of Brouwer's fixed point theorem
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La. Open problems

Plane fixed point problem

Short history

>

>

>

Ayres (1930)

Borsuk (1932, 1954)
Hamilton (1938, 1951)

Kelley (1939)

Cartwright, Littlewood (1951)
Bing (1951, 1969)

Ward (1959)

Young (1960)

Bell (1967, 1978)
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La. Open problems

Plane fixed point problem

Short history

>

>

>

Sieklucki (1968)

lliadis (1970)

Hagopian (1971, 1988, 1996, 2007)
Fugate, Mohler (1977)

Bellamy (1979)

Minc (1990, 1999)

Akis (1999)

Mayer, Oversteegen, Tymchatyn (2003)
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L4. Open problems

Plane fixed point problem

Short history
» Blokh, Fokkink, Mayer, Oversteegen, Tymchatyn (2013)

MEMOIRS

American Mathematical Society

Volume 224 Number 1053

Fixed Point Theorems
for Plane Continua
with Applications

Alexander M. Blokh
Robbert J. Fokkink
John C. Mayer
Lex G. Oversteegen
E. D. Tymachtyn

American Mathematical Society
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Auslander’s problem

» Is there a non-separating plane continuum admitting a minimal
dynamical system?
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L g, Open problems

Auslander’s problem

» Is there a non-separating plane continuum admitting a minimal
dynamical system?

Connected question:

> Is there a tree-like continuum admitting a minimal dynamical
system?

N
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Thanks for your attention!
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