How to reconstruct a permutation from a few large patterns
 joint work with Erkko Lehtonen

Matej Bel University

February 20, 2024

Introduction

Theory of Permutation Patterns and Patterns Avoidance

- 1935 Erdös - Szekeres Theorem
if $a, b \in \mathbb{N}$ then every permutation of rank $(a-1)(b-1)+1$ must contain either the pattern $12 \ldots$ a or the pattern $b b-1 \ldots 21$

Introduction

Theory of Permutation Patterns and Patterns Avoidance

- 1935 Erdös - Szekeres Theorem
if $a, b \in \mathbb{N}$ then every permutation of rank $(a-1)(b-1)+1$ must contain either the pattern $12 \ldots$ a or the pattern $b b-1 \ldots 21$
- 1909 Paul MacMahon work on "lattice permutations"

Introduction

Theory of Permutation Patterns and Patterns Avoidance

- 1935 Erdös - Szekeres Theorem
if $a, b \in \mathbb{N}$ then every permutation of rank
$(a-1)(b-1)+1$ must contain either the pattern
$12 \ldots$ a or the pattern $b b-1 \ldots 21$
- 1909 Paul MacMahon
work on "lattice permutations"
- Donald Knuth in 1968

Robert Tarjan in 1972
Vaughan Pratt in 1973

Introduction

Theory of Permutation Patterns and Patterns Avoidance

- 1935 Erdös - Szekeres Theorem
if $a, b \in \mathbb{N}$ then every permutation of rank
$(a-1)(b-1)+1$ must contain either the pattern
$12 \ldots$ a or the pattern $b b-1 \ldots 21$
- 1909 Paul MacMahon
work on "lattice permutations"
- Donald Knuth in 1968

Robert Tarjan in 1972
Vaughan Pratt in 1973

- Annual International Conference since 2003

Starting with the basics: what is a pattern?

- Permutation $\pi \in S_{n}$ represented as a word

Starting with the basics: what is a pattern?

- Permutation $\pi \in S_{n}$ represented as a word

- For $\ell<n, \tau \in S_{\ell}$ is a pattern of π if, for some $t_{1}<t_{2}<\cdots<t_{\ell}$ in [n] the permutation τ is order isomorphic to $\pi_{t_{1}} \pi_{t_{2}} \ldots \pi_{t_{\ell}}$.

Starting with the basics: what is a pattern?

- Permutation $\pi \in S_{n}$ represented as a word

- For $\ell<n, \tau \in S_{\ell}$ is a pattern of π if, for some $t_{1}<t_{2}<\cdots<t_{\ell}$ in [n] the permutation τ is order isomorphic to $\pi_{t_{1}} \pi_{t_{2}} \ldots \pi_{t_{\ell}}$.
- Example: the permutation 312 is a pattern of $\pi=156324$: it is order isomorphic to ...

The plot of permutation $\pi=156324$

The plot of the pattern $\tau=312$

Starting with the basics: what is a pattern?

- A permutation can admit several occurences of the same pattern: for example, $\pi=156324$ has four occurrences of $\tau=312$ namely

Starting with the basics: what is a pattern?

- A permutation can admit several occurences of the same pattern: for example,

$$
\pi=156324 \text { has four occurrences of } \tau=312 \text { namely }
$$

$$
\pi=156324 \quad \rightsquigarrow \quad 634 \quad \rightsquigarrow \quad 312
$$

Starting with the basics: what is a pattern?

- A permutation can admit several occurences of the same pattern: for example,

$$
\pi=156324 \text { has four occurrences of } \tau=312 \text { namely }
$$

$$
\begin{array}{lllll}
\pi=156324 & \rightsquigarrow & 634 & \rightsquigarrow & 312 \\
\pi=156324 & \rightsquigarrow & 624 & \rightsquigarrow & 312
\end{array}
$$

Starting with the basics: what is a pattern?

- A permutation can admit several occurences of the same pattern: for example,

$$
\pi=156324 \text { has four occurrences of } \tau=312 \text { namely }
$$

$$
\begin{array}{lllll}
\pi=156324 & \rightsquigarrow & 634 & \rightsquigarrow & 312 \\
\pi=156324 & \rightsquigarrow & 624 & \rightsquigarrow & 312 \\
\pi=156324 & \rightsquigarrow & 534 & \rightsquigarrow & 312 \\
\pi=156324 & \rightsquigarrow & 524 & \rightsquigarrow & 312
\end{array}
$$

Starting with the basics: what is an $(n-k)$-pattern?

- A permutation of rank ℓ is a pattern of permutations of ranks greater than ℓ.

Starting with the basics: what is an $(n-k)$-pattern?

- A permutation of rank ℓ is a pattern of permutations of ranks greater than ℓ.
$\tau=312$ is a pattern of both permutations

$$
\pi=156324 \quad \text { and } \quad \theta=4231
$$

Starting with the basics: what is an $(n-k)$-pattern?

- A permutation of rank ℓ is a pattern of permutations of ranks greater than ℓ.
$\tau=312$ is a pattern of both permutations

$$
\pi=156324 \quad \text { and } \quad \theta=4231
$$

- A permutation of rank ℓ is an $(n-k)$-pattern of a permutation of rank n if $\ell=n-k$.

Starting with the basics: what is an $(n-k)$-pattern?

- A permutation of rank ℓ is a pattern of permutations of ranks greater than ℓ.
$\tau=312$ is a pattern of both permutations

$$
\pi=156324 \quad \text { and } \quad \theta=4231
$$

- A permutation of rank ℓ is an $(n-k)$-pattern of a permutation of rank n if $\ell=n-k$.
For $n=6$
$\tau=312$ is an $(n-3)$-pattern of $\pi=156324$
and for $n=4$
$\tau=312$ is an $(n-1)$-pattern of $\theta=4231$.

The reconstruction of a permutation from its patterns

- Is a finite simple graph uniquely determined, up to isomorphism, by the collection of its one-vertex-deleted subgraphs?

Paul Kelly (1942) and Stanislaw Ulam

Conjecture: it holds for every graph with at least three vertices

The reconstruction of a permutation from its patterns

- Is a finite simple graph uniquely determined, up to isomorphism, by the collection of its one-vertex-deleted subgraphs?

Paul Kelly (1942) and Stanislaw Ulam

Conjecture: it holds for every graph with at least three vertices

- Reformulating it for permutations:

The reconstruction of a permutation from its patterns

- Is a finite simple graph uniquely determined, up to isomorphism, by the collection of its one-vertex-deleted subgraphs?

Paul Kelly (1942) and Stanislaw Ulam

Conjecture: it holds for every graph with at least three vertices

- Reformulating it for permutations:

Delete k entries of a permutation $\pi \in S_{n}$ in all possible ways. Renumber the sequences from 1 to $n-k$ to form ($n-k$)-patterns. (\rightsquigarrow the $(n-k)$-deck of π)

The reconstruction of a permutation from its patterns

- Is a finite simple graph uniquely determined, up to isomorphism, by the collection of its one-vertex-deleted subgraphs?

Paul Kelly (1942) and Stanislaw Ulam

Conjecture: it holds for every graph with at least three vertices

- Reformulating it for permutations:

Delete k entries of a permutation $\pi \in S_{n}$ in all possible ways. Renumber the sequences from 1 to $n-k$ to form ($n-k$)-patterns. (\rightsquigarrow the ($n-k$)-deck of π) How large must n be in order that it is possible to reconstruct π from its ($n-k$)-deck? Or from its underlying set?
In other words, how large must n be in order that the deck is unique to π ?

The reconstruction of a permutation from its patterns

- A permutation $\pi \in S_{n}$ is reconstructible from its
($n-k$)-patterns if

$$
\operatorname{deck}_{n-k}(\pi)=\operatorname{deck}_{n-k}(\sigma) \text { if and only if } \pi=\sigma
$$

holds for every $\sigma \in S_{n}$.

The reconstruction of a permutation from its patterns

- A permutation $\pi \in S_{n}$ is reconstructible from its ($n-k$)-patterns if

$$
\operatorname{deck}_{n-k}(\pi)=\operatorname{deck}_{n-k}(\sigma) \text { if and only if } \pi=\sigma
$$

holds for every $\sigma \in S_{n}$.

- The problem of reconstructing a permutation from its patterns has already been considered by several authors.

The reconstruction of a permutation from its patterns

- A permutation $\pi \in S_{n}$ is reconstructible from its
($n-k$)-patterns if

$$
\operatorname{deck}_{n-k}(\pi)=\operatorname{deck}_{n-k}(\sigma) \text { if and only if } \pi=\sigma
$$

holds for every $\sigma \in S_{n}$.

- The problem of reconstructing a permutation from its patterns has already been considered by several authors.
Mariana Raykova, Permutation reconstruction from minors.
Rebecca Smith, Permutation reconstruction.
Both published in Electron. J. Combin., 2006.
Their work establishes that, for $\mathbf{n} \geq 5$, every n-permutation is reconstructible from its (n-1)-deck.

The reconstruction of a permutation from its patterns

- John Ginsburg, Determining a permutation from its set of reductions, published in Ars Combin., 2007. He proves that every \mathbf{n}-permutation is also reconstructible from its set of (n-1)-patterns.

The reconstruction of a permutation from its patterns

- John Ginsburg, Determining a permutation from its set of reductions, published in Ars Combin., 2007. He proves that every \mathbf{n}-permutation is also reconstructible from its set of ($\mathbf{n} \mathbf{- 1}$)-patterns.
- What if instead we consider $k>1$? Is a permutation reconstructible from its set of $(n-k)$-patterns or from its ($n-k$)-deck?

The reconstruction of a permutation from its patterns

- John Ginsburg, Determining a permutation from its set of reductions, published in Ars Combin., 2007. He proves that every \mathbf{n}-permutation is also reconstructible from its set of ($\mathbf{n} \mathbf{- 1}$)-patterns.
- What if instead we consider $k>1$? Is a permutation reconstructible from its set of $(n-k)$-patterns or from its ($n-k$)-deck?
- Raykova and Smith: for a fixed $k>1$, there exists a natural number N such that all permutations of rank $n \geq N$ are reconstructible from their $(n-k)$-decks.

The reconstruction of a permutation from its patterns

- John Ginsburg, Determining a permutation from its set of reductions, published in Ars Combin., 2007. He proves that every \mathbf{n}-permutation is also reconstructible from its set of ($n-1$)-patterns.
- What if instead we consider $k>1$? Is a permutation reconstructible from its set of $(n-k)$-patterns or from its ($n-k$)-deck?
- Raykova and Smith: for a fixed $k>1$, there exists a natural number N such that all permutations of rank $n \geq N$ are reconstructible from their ($n-k$)-decks.
- What is N_{k}, the least of those numbers N ?
$\mathbf{N}_{1}=\mathbf{5}$ and $\mathbf{N}_{2}=\mathbf{6}$ (Smith and Raykova respectively)

$$
\mathbf{k}+\log _{2} \mathbf{k}<\mathbf{N}_{\mathbf{k}}<\frac{\mathbf{k}^{2}}{4}+\mathbf{2 k}+\mathbf{4} \text { (Raykova) }
$$

The problem we address

- The cardinality of a deck is the sum of the multiplicities of the elements that occur in the deck.

The problem we address

- The cardinality of a deck is the sum of the multiplicities of the elements that occur in the deck.

For example, the (5)-deck of the permutation

$$
\pi=126534
$$

is

$$
\left\langle(15423)^{2},(12534)^{2},(12543)^{2}\right\rangle
$$

and it has cardinality $2+2+2=6$

The problem we address

- The cardinality of a deck is the sum of the multiplicities of the elements that occur in the deck.

For example, the (5)-deck of the permutation

$$
\pi=126534
$$

is

$$
\left\langle(15423)^{2},(12534)^{2},(12543)^{2}\right\rangle
$$

and it has cardinality $2+2+2=6$ and
(4)-deck of the permutation

$$
\pi=126534
$$

is

$$
\left\langle(1423)^{4},\left\langle(1432)^{4},(1234)^{1},(1243)^{5}\left\langle(4321)^{1}\right\rangle\right.\right.
$$

and it has cardinality $4+4+1+5+1=15$.

Some open problems

For a fixed k, take $n \geq \frac{k^{2}}{4}+2 k+4$.
Any permutation π in S_{n} is reconstructible from its ($n-k$)-deck.
But...

Some open problems

For a fixed k, take $n \geq \frac{k^{2}}{4}+2 k+4$.
Any permutation π in S_{n} is reconstructible from its ($n-k$)-deck.
But...

- How can we reconstruct π ?

Some open problems

For a fixed k, take $n \geq \frac{k^{2}}{4}+2 k+4$.
Any permutation π in S_{n} is reconstructible from its ($n-k$)-deck.
But...

- How can we reconstruct π ?
- What if we do not need all the $(n-k)$-cards?

In that case what is the value of $\mathbf{H}_{k}(\mathbf{n})$, the smallest number of cards needed to guarantee the reconstruction?
Clearly $\mathbf{H}_{\mathbf{k}}(\mathbf{n}) \leq\binom{\mathbf{n}}{\mathbf{k}}$.

Some open problems

For a fixed k, take $n \geq \frac{k^{2}}{4}+2 k+4$.
Any permutation π in S_{n} is reconstructible from its
($n-k$)-deck.
But...

- How can we reconstruct π ?
- What if we do not need all the $(n-k)$-cards?

In that case what is the value of $\mathbf{H}_{k}(\mathbf{n})$, the smallest number of cards needed to guarantee the reconstruction?
Clearly $\mathbf{H}_{\mathbf{k}}(\mathbf{n}) \leq\binom{\mathbf{n}}{\mathbf{k}}$.

- And if $H_{k}(n)$ is known, how can we recognise a partial deck of a permutation in S_{n} among the submultisets of cardinality $H_{k}(n)$ formed by permutations in S_{n-k} ?

The problem we address

- For $k=1$, one of the open problems posed by Ginsburg:

The problem we address

- For $k=1$, one of the open problems posed by Ginsburg:

Can we find a non-trivial function $f:\{n \in \mathbb{N} \mid n \geq 5\} \rightarrow \mathbb{N}$
so that $f(n)$ is the smallest natural number m for which
every permutation $\pi \in S_{n}$ is uniquely determined by any of its partial $(n-1)$-decks of cardinality \mathbf{m} ?

Searching for ...

- $C_{n}:=$ the largest number for which there exists two distinct permutations with the same $(n-1)$-partial deck of cardinality C_{n}.

n	C_{n}
5	$\binom{5}{4}-1$
6	4
7	5
8	5

Searching for ...

- $C_{n}:=$ the largest number for which there exists two distinct permutations with the same $(n-1)$-partial deck of cardinality C_{n}.

n	C_{n}
5	$\binom{5}{4}-1$
6	4
7	5
8	5

From $5 \leq n \leq 8$,
$-C_{n}$ is $\binom{n}{n-1}-1$ only for $n=5$.

Searching for ...

- $C_{n}:=$ the largest number for which there exists two distinct permutations with the same $(n-1)$-partial deck of cardinality C_{n}.

n	C_{n}
5	$\binom{5}{4}-1$
6	4
7	5
8	5

From $5 \leq n \leq 8$,

- C_{n} is $\binom{n}{n-1}-1$ only for $n=5$.
- 5 is the unique rank for which the reconstruction of any permutation is not possible from a (proper) partial ($n-1$)-deck.

Searching for ...

- $C_{n}:=$ the largest number for which there exists two distinct permutations with the same $(n-1)$-partial deck of cardinality C_{n}.

n	C_{n}
5	$\binom{5}{4}-1$
6	4
7	5
8	5

From $5 \leq n \leq 8$,

- C_{n} is $\binom{n}{n-1}-1$ only for $n=5$.
- 5 is the unique rank for which the reconstruction of any permutation is not possible from a (proper) partial ($n-1$)-deck.
- $\mathrm{C}_{n}=\lceil n / 2\rceil+1$ and hence $\mathbf{H}(\mathbf{n})=\mathrm{C}_{\mathbf{n}}+\mathbf{1}=\lceil\mathbf{n} / 2\rceil+2$.

Claiming $\mathbf{H}(\mathbf{n}) \geq\lceil\mathbf{n} / \mathbf{2}\rceil+2$.

Take $n \geq 5$,

- for $n=2 m$, the two distinct permutations $\left(\iota_{m-1} \ominus 1\right) \oplus \iota_{m}$ and $\left(\iota_{m} \ominus 1\right) \oplus \iota_{m-1}$ have $\lceil n / 2\rceil+1$ common $(n-1)$-cards

For $\mathbf{m}=\mathbf{5}$:
The direct sums

The decks of these permutations admit the following common submultiset of cardinality $\lceil 10 / 2\rceil+1$:

$$
\left\langle 123456789,(234516789)^{5}\right\rangle
$$

Claiming $\mathbf{H}(\mathbf{n}) \geq\lceil\mathbf{n} / \mathbf{2}\rceil+2$.

- for $n=2 m+1$, the two distinct permutations $\iota_{m-1} \oplus \delta_{2} \oplus \iota_{m}$ and $\iota_{m} \oplus \delta_{2} \oplus \iota_{m-1}$ have $\lceil n / 2\rceil+1$ common ($n-1$)-cards

For $\mathbf{m}=\mathbf{5}$:

The permutations $\iota_{4} \oplus \delta_{2} \oplus \iota_{5}$ and $\iota_{5} \oplus \delta_{2} \oplus \iota_{4}$ have $\lceil 11 / 2\rceil+1$ common $(11-1)$-cards

Claiming $\mathbf{H}(\mathbf{n}) \geq\lceil\mathbf{n} / \mathbf{2}\rceil+2$.

- for $n=2 m+1$, the two distinct permutations $\iota_{m-1} \oplus \delta_{2} \oplus \iota_{m}$ and $\iota_{m} \oplus \delta_{2} \oplus \iota_{m-1}$ have $\lceil n / 2\rceil+1$ common ($n-1$)-cards

For $\mathbf{m}=\mathbf{5}$:

The permutations $\iota_{4} \oplus \delta_{2} \oplus \iota_{5}$ and $\iota_{5} \oplus \delta_{2} \oplus \iota_{4}$ have $\lceil 11 / 2\rceil+1$ common $(11-1)$-cards

- therefore $C_{n} \geq\lceil n / 2\rceil+1$.

Claiming $\mathbf{H}(\mathbf{n}) \geq\lceil\mathbf{n} / \mathbf{2}\rceil+2$.

- for $n=2 m+1$, the two distinct permutations $\iota_{m-1} \oplus \delta_{2} \oplus \iota_{m}$ and $\iota_{m} \oplus \delta_{2} \oplus \iota_{m-1}$ have $\lceil n / 2\rceil+1$ common ($n-1$)-cards

For $\mathbf{m}=\mathbf{5}$:

The permutations $\iota_{4} \oplus \delta_{2} \oplus \iota_{5}$ and $\iota_{5} \oplus \delta_{2} \oplus \iota_{4}$ have $\lceil 11 / 2\rceil+1$ common $(11-1)$-cards

- therefore $C_{n} \geq\lceil n / 2\rceil+1$.
-Consequently, $H(n) \geq\lceil n / 2\rceil+2$ for all $n \geq 5$.

Claiming $\mathbf{H}(\mathbf{n}) \geq\lceil\mathbf{n} / \mathbf{2}\rceil+2$.

- for $n=2 m+1$, the two distinct permutations $\iota_{m-1} \oplus \delta_{2} \oplus \iota_{m}$ and $\iota_{m} \oplus \delta_{2} \oplus \iota_{m-1}$ have $\lceil n / 2\rceil+1$ common ($n-1$)-cards

For $\mathbf{m}=\mathbf{5}$:

The permutations $\iota_{4} \oplus \delta_{2} \oplus \iota_{5}$ and $\iota_{5} \oplus \delta_{2} \oplus \iota_{4}$ have $\lceil 11 / 2\rceil+1$ common $(11-1)$-cards

- therefore $C_{n} \geq\lceil n / 2\rceil+1$.
-Consequently, $H(n) \geq\lceil n / 2\rceil+2$ for all $n \geq 5$.
Conjecture: $H(n):=\lceil n / 2\rceil+2$ for $n \geqslant 5$.

Proved...

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $\lceil n / 2\rceil+2$ cards.

Proved...

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $\lceil n / 2\rceil+2$ cards.
...making use of a fundamental result:

Proved...

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $\lceil n / 2\rceil+2$ cards.
...making use of a fundamental result:
Ginsburg, Lemma 1(iv)
Let $\pi \in S_{n}$. If $s, t \in[n]$ with $s \leq t$, then $\pi-s=\pi-t$ if and only if $\pi[s, t]$ is a monotone segment in π.

Example: For $\pi \in S_{7}, s=3$ and $t=5$ suppose that $\pi-s=\pi-t=126534$.

Example: For $\pi \in S_{7}, s=3$ and $t=5$ suppose that $\pi-s=\pi-t=126534$. Then

$$
\pi=1^{\prime} 2^{\prime} _6^{\prime} 5^{\prime} 3^{\prime} 4^{\prime} \quad \text { or } \quad \pi=1^{\prime} 2^{\prime} 6^{\prime} 5^{\prime} _3^{\prime} 4^{\prime}
$$

where the number i^{\prime} must be either i or $i+1$.

Example: For $\pi \in S_{7}, s=3$ and $t=5$ suppose that $\pi-s=\pi-t=126534$. Then

$$
\pi=1^{\prime} 2^{\prime} _6^{\prime} 5^{\prime} 3^{\prime} 4^{\prime} \quad \text { or } \quad \pi=1^{\prime} 2^{\prime} 6^{\prime} 5^{\prime} _3^{\prime} 4^{\prime}
$$

where the number i^{\prime} must be either i or $i+1$.
Clearly $\pi(5) \geq 5$ which implies $\pi=126^{\prime} 5^{\prime} _34$.

Example: For $\pi \in S_{7}, s=3$ and $t=5$ suppose that $\pi-s=\pi-t=126534$. Then

$$
\pi=1^{\prime} 2^{\prime} _6^{\prime} 5^{\prime} 3^{\prime} 4^{\prime} \quad \text { or } \quad \pi=1^{\prime} 2^{\prime} 6^{\prime} 5^{\prime} _3^{\prime} 4^{\prime}
$$

where the number i^{\prime} must be either i or $i+1$.
Clearly $\pi(5) \geq 5$ which implies $\pi=126^{\prime} 5^{\prime} _34$.
Also $\pi(3) \geq 6$ and therefore $\pi=126^{\prime} 5 _34$. Thus
$\pi=1276 \underline{5} 34$.

Proved...

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $\lceil n / 2\rceil+2$ cards.
...making use of a fundamental result:

Ginsburg, Lemma 1(iv)
Let $\pi \in S_{n}$. If $s, t \in[n]$ with $s \leq t$, then $\pi-s=\pi-t$ if and only if $\pi[s, t]$ is a monotone segment in π.

Proved...

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $\lceil n / 2\rceil+2$ cards.
...making use of a fundamental result:

Ginsburg, Lemma 1(iv)
Let $\pi \in S_{n}$. If $s, t \in[n]$ with $s \leq t$, then $\pi-s=\pi-t$ if and only if $\pi[s, t]$ is a monotone segment in π.

Ginsburg, Lemma 1(vi) Let $\pi \in S_{n}$. If $i, j \in[n]$ with $i<j$, then $(\pi \downarrow j) \downarrow i=(\pi \downarrow i) \downarrow(j-1)$.

Example:

Example:
Example: For $\pi=126534$ and $i=2$ and $j=4$ we have

$$
\begin{array}{cllc}
126534 & \rightsquigarrow 12653 & \rightsquigarrow & 12543=\pi \downarrow 4 \\
12543 & \rightsquigarrow 1543 & \rightsquigarrow 1432=(\pi \downarrow 4) \downarrow(2) \\
126534 & \rightsquigarrow 16534 & \rightsquigarrow & 15423=\pi \downarrow 2 \\
15423 & \rightsquigarrow 1542 & \rightsquigarrow 1432=(\pi \downarrow 2) \downarrow(3)
\end{array}
$$

A key idea

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $H(n)$ cards.

Theorem's proof

- Constructive and it can be turned into a reconstruction algorithm.

A key idea

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $H(n)$ cards.

Theorem's proof

- Constructive and it can be turned into a reconstruction algorithm.
- The key idea is to determine $\pi^{-1}(i)$ and $\pi \downarrow i$, for some $i \in[n]$, from the given partial deck of π.

A key idea

Theorem 19, G. \& Lehtonen 2021
For $n \geq 5$, every permutation of rank n is reconstructible from $H(n)$ cards.

Theorem's proof

- Constructive and it can be turned into a reconstruction algorithm.
- The key idea is to determine $\pi^{-1}(i)$ and $\pi \downarrow i$, for some $i \in[n]$, from the given partial deck of π.
- From the position $\pi^{-1}(i)$ and the pattern $\pi \downarrow i$ it is easy to recover π,:

$$
\pi=(\pi \downarrow i) \uparrow_{\pi^{-1}(i)} i
$$

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

Note: In some cases it is not directly possible to determine $\pi^{-1}(i)$ and $\pi \downarrow i$.

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

Note: In some cases it is not directly possible to determine $\pi^{-1}(i)$ and $\pi \downarrow i$. Then

- we determine $\pi^{-1}(1)$, which is always possible;

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

Note: In some cases it is not directly possible to determine $\pi^{-1}(i)$ and $\pi \downarrow i$. Then

- we determine $\pi^{-1}(1)$, which is always possible;
- we build a (partial) deck for $\pi \downarrow 1$ from the partial deck of π;

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

p

Note: In some cases it is not directly possible to determine $\pi^{-1}(i)$ and $\pi \downarrow i$. Then

- we determine $\pi^{-1}(1)$, which is always possible;
- we build a (partial) deck for $\pi \downarrow 1$ from the partial deck of π;
- we apply the previous procedure aiming now to reconstruct $\pi \downarrow 1$;

Example: Let $\tau=312645, p=3$ and $v=4$.
The permutation $\tau \uparrow_{p} v$ is the permutation we obtain from τ by inserting the value v on position p as illustrated:

The permutation τ

p

$\tau \uparrow 34$

Note: In some cases it is not directly possible to determine $\pi^{-1}(i)$ and $\pi \downarrow i$. Then

- we determine $\pi^{-1}(1)$, which is always possible;
- we build a (partial) deck for $\pi \downarrow 1$ from the partial deck of π;
- we apply the previous procedure aiming now to reconstruct $\pi \downarrow 1$;
- by a recursive application of the algorithm, we end up reconstructing π.

The reconstruction process

The reconstruction process

The starting point: $n \geq 5$ and D is a given multiset of S_{n-1} of cardinality $H(n)$ which is assumed to be a partial deck of some permutation $\pi \in S_{n}$.

The reconstruction process

The starting point: $n \geq 5$ and D is a given multiset of S_{n-1} of cardinality $H(n)$ which is assumed to be a partial deck of some permutation $\pi \in S_{n}$.
-The easiest case: all cards in D are equal, say $\tau_{k}=\tau$ for all $k \in[H(n)]$.

The reconstruction process

The starting point: $n \geq 5$ and D is a given multiset of S_{n-1} of cardinality $H(n)$ which is assumed to be a partial deck of some permutation $\pi \in S_{n}$.

- The easiest case: all cards in D are equal, say $\tau_{k}=\tau$ for all $k \in[H(n)]$.
G. and Lehtonen 2021, Lemma 7 (i)
τ contains a unique maximal monotone segment $\pi[u, v]$ of length at least $H(n)$.

The reconstruction process

The starting point: $n \geq 5$ and D is a given multiset of S_{n-1} of cardinality $H(n)$ which is assumed to be a partial deck of some permutation $\pi \in S_{n}$.

- The easiest case: all cards in D are equal, say $\tau_{k}=\tau$ for all $k \in[H(n)]$.
G. and Lehtonen 2021, Lemma 7 (i)
τ contains a unique maximal monotone segment $\pi[u, v]$ of length at least $H(n)$.
Thus

$$
\pi=\tau \uparrow_{u} \tau(u) \text { if } \pi[u, v] \text { is ascending }
$$

and

$$
\pi=\tau \uparrow_{v+1} \tau(v) \text { if } \pi[u, v] \text { is descending. }
$$

The reconstruction process: when D contains at least two different cards

The reconstruction process: when D contains at least two different cards

By inspection on D one of two cases must occur:

- Monotone case: there is a card of D that contains a monotone sequence $k_{1} k_{2} \ldots k_{s}$ such that in every card either $k_{1} k_{2} \ldots k_{s}$ or $\left(k_{1}-1\right)\left(k_{2}-1\right) \ldots\left(k_{s}-1\right)$ occurs.
- Non monotone case

The reconstruction process: the monotone case

- Subcase: D has a unique maximal monotone segment

The reconstruction process: the monotone case

- Subcase: D has a unique maximal monotone segment

Example
$D=\left\langle(475832169)^{3}, 758321469,578321469\right.$, $576832149,586932147\rangle$.

The reconstruction process: the monotone case

- Subcase: D has a unique maximal monotone segment

Example $D=\left\langle(475832169)^{3}, 758321469,578321469\right.$, $576832149,586932147\rangle$.

The card $\tau=475832169$ has a unique maximal monotone segment of length $m=3$ and multiplicity m.

The reconstruction process: the monotone case

- Subcase: D has a unique maximal monotone segment

Example
$D=\left\langle(475832169)^{3}, 758321469,578321469\right.$,
$576832149,586932147\rangle$.
The card $\tau=475832169$ has a unique maximal monotone segment of length $m=3$ and multiplicity m.

G. and Lehtonen 2021, Proposition 8

D contains a card τ of multiplicity $m \geq 3$ such that τ has a unique maximal monotone segment $\tau[u, v]=\sigma=k_{1} \ldots k_{q}$ of length
$\geq m-1$.
If σ is descending, then $\pi=\tau \uparrow_{u}(\tau(u)+1)$.

The reconstruction process: the monotone case

- Subcase: D has a unique maximal monotone segment

Example
$D=\left\langle(475832169)^{3}, 758321469,578321469\right.$,
$576832149,586932147\rangle$.
The card $\tau=475832169$ has a unique maximal monotone segment of length $m=3$ and multiplicity m.

G. and Lehtonen 2021, Proposition 8

D contains a card τ of multiplicity $m \geq 3$ such that τ has a unique maximal monotone segment $\tau[u, v]=\sigma=k_{1} \ldots k_{q}$ of length
$\geq m-1$.
If σ is descending, then $\pi=\tau \uparrow_{u}(\tau(u)+1)$.

Then $\pi=\tau \uparrow_{5} 4=\underline{5} \underline{8} \underline{6} \underline{9} \underline{4} 321 \underline{10}$

Example

$D:=$
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$

Example
$D:=$
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$
The cards of multiplicity $m \geq 3$ have more than one monotone segment but in every card either $\kappa=456$ or $\kappa^{-}:=345$ is a maximal ascending segment.

Example
D:=
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$
The cards of multiplicity $m \geq 3$ have more than one monotone segment but in every card either $\kappa=456$ or $\kappa^{-}:=345$ is a maximal ascending segment.
For $G:=\left\{g_{\tau} \mid \tau \in D\right\}$, where

$$
g_{\tau}:= \begin{cases}\left(4, \tau^{-1}(4)\right), & \text { if } \kappa \sqsubseteq \tau, \\ \left(3, \tau^{-1}(3)\right), & \text { if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

we obtain
$G=\{(3,5),(4,4)\}$

Example
D:=
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$
The cards of multiplicity $m \geq 3$ have more than one monotone segment but in every card either $\kappa=456$ or $\kappa^{-}:=345$ is a maximal ascending segment.
For $G:=\left\{g_{\tau} \mid \tau \in D\right\}$, where

$$
g_{\tau}:= \begin{cases}\left(4, \tau^{-1}(4)\right), & \text { if } \kappa \sqsubseteq \tau, \\ \left(3, \tau^{-1}(3)\right), & \text { if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

we obtain
$G=\{(3,5),(4,4)\}$
$A:=\{a \mid \exists b(a, b) \in G\}=\{3,4\}$

Example
D :=
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$
The cards of multiplicity $m \geq 3$ have more than one monotone segment but in every card either $\kappa=456$ or $\kappa^{-}:=345$ is a maximal ascending segment.
For $G:=\left\{g_{\tau} \mid \tau \in D\right\}$, where

$$
g_{\tau}:= \begin{cases}\left(4, \tau^{-1}(4)\right), & \text { if } \kappa \sqsubseteq \tau, \\ \left(3, \tau^{-1}(3)\right), & \text { if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

we obtain
$G=\{(3,5),(4,4)\}$
$A:=\{a \mid \exists b(a, b) \in G\}=\{3,4\}$
$B:=\{b \mid \exists a(a, b) \in G\}=\{4,5\}$.

Example
D:=
$\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$
The cards of multiplicity $m \geq 3$ have more than one monotone segment but in every card either $\kappa=456$ or $\kappa^{-}:=345$ is a maximal ascending segment.
For $G:=\left\{g_{\tau} \mid \tau \in D\right\}$, where

$$
g_{\tau}:= \begin{cases}\left(4, \tau^{-1}(4)\right), & \text { if } \kappa \sqsubseteq \tau, \\ \left(3, \tau^{-1}(3)\right), & \text { if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

we obtain
$G=\{(3,5),(4,4)\}$
$A:=\{a \mid \exists b(a, b) \in G\}=\{3,4\}$
$B:=\{b \mid \exists a(a, b) \in G\}=\{4,5\}$.
Take

$$
a^{*}:=\max A=4, \quad b^{*}:=\max B=5 .
$$

Example

$$
\begin{aligned}
& \kappa=456 \quad A=\{3,4\} \quad B=\{4,5\} \\
& a^{*}=\max A=4, \quad b^{*}=\max B=5 .
\end{aligned}
$$

Example
$\kappa=456 \quad A=\{3,4\} \quad B=\{4,5\}$
$a^{*}=\max A=4, \quad b^{*}=\max B=5$.
Since length of $\kappa=3$ and $2 \leq 3 \leq 10-H(10)$, we apply
Proposition 12 (G. \& Lehtonen 2021)
and conclude that $\pi[u, v]$ is a maximal ascending segment in π with initial value j where

Example
$\kappa=456 \quad A=\{3,4\} \quad B=\{4,5\}$
$a^{*}=\max A=4, \quad b^{*}=\max B=5$.
Since length of $\kappa=3$ and $2 \leq 3 \leq 10-H(10)$, we apply
Proposition 12 (G. \& Lehtonen 2021)
and conclude that $\pi[u, v]$ is a maximal ascending segment in π with initial value j where

$$
\begin{aligned}
& j:= \begin{cases}a^{*}+1, & \text { if }|A|=1 \text { and } H(10) \leq a^{*}, \\
a^{*}, & \text { otherwise, }\end{cases} \\
& u:= \begin{cases}b^{*}+1, & \text { if }|B|=1 \text { and } H(n) \leq b^{*}, \\
b^{*}, & \text { otherwise, }\end{cases} \\
& v:=u+q-1=5+3-1=7 .
\end{aligned}
$$

Example
$\kappa=456 \quad A=\{3,4\} \quad B=\{4,5\}$
$a^{*}=\max A=4, \quad b^{*}=\max B=5$.
Since length of $\kappa=3$ and $2 \leq 3 \leq 10-H(10)$, we apply
Proposition 12 (G. \& Lehtonen 2021)
and conclude that $\pi[u, v]$ is a maximal ascending segment in π with initial value j where

$$
\begin{aligned}
& j:= \begin{cases}a^{*}+1, & \text { if }|A|=1 \text { and } H(10) \leq a^{*}, \\
a^{*}, & \text { otherwise, }\end{cases} \\
& u:= \begin{cases}b^{*}+1, & \text { if }|B|=1 \text { and } H(n) \leq b^{*}, \\
b^{*}, & \text { otherwise, }\end{cases} \\
& v:=u+q-1=5+3-1=7 .
\end{aligned}
$$

Hence $\pi[5,7]=456$ is a maximal ascending segment in π.

$$
D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle
$$

$\pi[5,7]=456$ is a maximal ascending segment in π.

$D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle$

$\pi[5,7]=456$ is a maximal ascending segment in π.
For each $\tau^{\prime} \in D$ we define

$$
\tau^{\prime}:= \begin{cases}\tau \downarrow \kappa, & \text { if } \kappa \sqsubseteq \tau, \\ \tau \downarrow \kappa^{-}, & \text {if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

$$
D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle
$$

$\pi[5,7]=456$ is a maximal ascending segment in π.
For each $\tau^{\prime} \in D$ we define

$$
\tau^{\prime}:= \begin{cases}\tau \downarrow \kappa, & \text { if } \kappa \sqsubseteq \tau, \\ \tau \downarrow \kappa^{-}, & \text {if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

and obtain
$D^{\prime}:=\left\langle\tau^{\prime} \mid \tau \in D\right\rangle=\left\langle(645321)^{4},(654321)^{2},(564321)^{1}\right\rangle$

$$
D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle
$$

$\pi[5,7]=456$ is a maximal ascending segment in π.
For each $\tau^{\prime} \in D$ we define

$$
\tau^{\prime}:= \begin{cases}\tau \downarrow \kappa, & \text { if } \kappa \sqsubseteq \tau, \\ \tau \downarrow \kappa^{-}, & \text {if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

and obtain
$D^{\prime}:=\left\langle\tau^{\prime} \mid \tau \in D\right\rangle=\left\langle(645321)^{4},(654321)^{2},(564321)^{1}\right\rangle$
D^{\prime} is (a partial) deck of $\pi \downarrow \pi[5,7] \in S_{7}$,

$$
D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle
$$

$\pi[5,7]=456$ is a maximal ascending segment in π.
For each $\tau^{\prime} \in D$ we define

$$
\tau^{\prime}:= \begin{cases}\tau \downarrow \kappa, & \text { if } \kappa \sqsubseteq \tau, \\ \tau \downarrow \kappa^{-}, & \text {if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

and obtain
$D^{\prime}:=\left\langle\tau^{\prime} \mid \tau \in D\right\rangle=\left\langle(645321)^{4},(654321)^{2},(564321)^{1}\right\rangle$
D^{\prime} is (a partial) deck of $\pi \downarrow \pi[5,7] \in S_{7}$,
$\tau:=645321$ has multiplicity 4 and

$$
D:=\left\langle(978634521)^{3},(987456321)^{2}, 978456321,897456321\right\rangle
$$

$\pi[5,7]=456$ is a maximal ascending segment in π.
For each $\tau^{\prime} \in D$ we define

$$
\tau^{\prime}:= \begin{cases}\tau \downarrow \kappa, & \text { if } \kappa \sqsubseteq \tau, \\ \tau \downarrow \kappa^{-}, & \text {if } \kappa^{-} \sqsubseteq \tau .\end{cases}
$$

and obtain
$D^{\prime}:=\left\langle\tau^{\prime} \mid \tau \in D\right\rangle=\left\langle(645321)^{4},(654321)^{2},(564321)^{1}\right\rangle$
D^{\prime} is (a partial) deck of $\pi \downarrow \pi[5,7] \in S_{7}$,
$\tau:=645321$ has multiplicity 4 and
$\sigma=\tau[4,6]=321$ is a maximal monotone segment.
(As we did in a previous case) Apply Ginsburg's Lemma and Proposition 8 to $\pi \downarrow \pi[5,7] \in S_{7}$ and D^{\prime} and obtain

$$
\pi \downarrow \pi[5,7]=\tau \uparrow_{4}(\tau(4)+1)=(645321) \uparrow_{4} 4=7564321 .
$$

(As we did in a previous case) Apply Ginsburg's Lemma and Proposition 8 to $\pi \downarrow \pi[5,7] \in S_{7}$ and D^{\prime} and obtain

$$
\pi \downarrow \pi[5,7]=\tau \uparrow_{4}(\tau(4)+1)=(645321) \uparrow_{4} 4=7564321 .
$$

and now we can immediately reconstruct π :

$$
\begin{aligned}
\pi & =(\pi \downarrow \pi[5,7]) \uparrow_{5} \pi[5,7] \\
& =(7564321) \uparrow_{5}(456) \\
& =10897456321 .
\end{aligned}
$$

The reconstruction process: the non monotone case
Step 1 : Determine the position p of 1 in π (and simultaneously the position r of 2 in π).
This is done by comparing the positions of 1 and 2 in the cards and uses Lemmas 13 and 16 (G. \& Lehtonen, 2021).

The reconstruction process: the non monotone case

 Step 1 : Determine the position p of 1 in π (and simultaneously the position r of 2 in π).This is done by comparing the positions of 1 and 2 in the cards and uses Lemmas 13 and 16 (G. \& Lehtonen, 2021).

Step 2: Look for a card in the partial deck which has 1 at position r if $r<p$ or at position $r-1$ if $p<r$.
One of two cases must occur:

The reconstruction process: the non monotone case

 Step 1 : Determine the position p of 1 in π (and simultaneously the position r of 2 in π).This is done by comparing the positions of 1 and 2 in the cards and uses Lemmas 13 and 16 (G. \& Lehtonen, 2021).

Step 2: Look for a card in the partial deck which has 1 at position r if $r<p$ or at position $r-1$ if $p<r$.
One of two cases must occur:

- If such a card τ exists then it must be $\pi \downarrow 1$ and then $\pi=\tau \uparrow_{p} 1$.

The reconstruction process: the non monotone case

 Step 1 : Determine the position p of 1 in π (and simultaneously the position r of 2 in π).This is done by comparing the positions of 1 and 2 in the cards and uses Lemmas 13 and 16 (G. \& Lehtonen, 2021).

Step 2: Look for a card in the partial deck which has 1 at position r if $r<p$ or at position $r-1$ if $p<r$.
One of two cases must occur:

- If such a card τ exists then it must be $\pi \downarrow 1$ and then
$\pi=\tau \uparrow_{p} 1$.
- If no such card exists then $\pi \downarrow 1$ is not in the partial deck D.

Now the strategy is to define a partial deck of $\theta:=\pi \downarrow 1 \in S_{n-1}$ by removing 1 from the cards in D. We repeat the procedure for θ and D^{\prime}, starting from Step 1.

For more details:

For more details:
Permutation reconstruction from a few large patterns
G. \& Lehtonen The Electronic Journal of Combinatorics, 28(3), 2021

For more details:
Permutation reconstruction from a few large patterns
G. \& Lehtonen The Electronic Journal of Combinatorics, 28(3), 2021

Thank you!

