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Introduction

Theory of Permutation Patterns and Patterns Avoidance

I 1935 Erdös - Szekeres Theorem

if a, b ∈ N then every permutation of rank
(a − 1)(b − 1) + 1 must contain either the pattern
1 2 . . . a or the pattern b b − 1 . . . 2 1

I 1909 Paul MacMahon

work on ”lattice permutations”

I Donald Knuth in 1968

Robert Tarjan in 1972

Vaughan Pratt in 1973

I Annual International Conference since 2003
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Starting with the basics: what is a pattern?

I Permutation π ∈ Sn represented as a word

π1︸︷︷︸ π2︸︷︷︸ . . . πn︸︷︷︸
π(1) π(2) π(n)

I For ` < n, τ ∈ S` is a pattern of π if, for some
t1 < t2 < · · · < t` in [n] the permutation τ is order
isomorphic to πt1πt2 . . . πt` .

I Example: the permutation 3 1 2 is a pattern of
π = 1 5 6 3 2 4: it is order isomorphic to ...

The plot of permutation π = 1 5 6 3 2 4 The plot of the pattern τ = 3 1 2
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Starting with the basics: what is a pattern?

I A permutation can admit several occurences of the same
pattern: for example,

π = 1 5 6 3 2 4 has four occurrences of τ = 3 1 2 namely

π = 1 5 6 3 2 4  6 3 4  3 1 2

π = 1 5 6 3 2 4  6 2 4  3 1 2

π = 1 5 6 3 2 4  5 3 4  3 1 2

π = 1 5 6 3 2 4  5 2 4  3 1 2
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Starting with the basics: what is an (n − k)-pattern?

I A permutation of rank ` is a pattern of permutations of
ranks greater than `.

τ = 3 1 2 is a pattern of both permutations

π = 1 5 6 3 2 4 and θ = 4 2 3 1

I A permutation of rank ` is an (n − k)-pattern of a
permutation of rank n if ` = n − k .

For n = 6

τ = 3 1 2 is an (n − 3)-pattern of π = 1 5 6 3 2 4

and for n = 4

τ = 3 1 2 is an (n − 1)-pattern of θ = 4 2 3 1.
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The reconstruction of a permutation from its patterns

I Is a finite simple graph uniquely determined, up to
isomorphism, by the collection of its one-vertex-deleted
subgraphs?

Paul Kelly (1942) and Stanislaw Ulam

Conjecture: it holds for every graph with at least three
vertices

I Reformulating it for permutations:
Delete k entries of a permutation π ∈ Sn in all possible
ways. Renumber the sequences from 1 to n − k to form
(n − k)-patterns. ( the (n − k)-deck of π)

How large must n be in order that it is possible to
reconstruct π from its (n − k)-deck? Or from its
underlying set?

In other words, how large must n be in order that the
deck is unique to π?
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The reconstruction of a permutation from its patterns

I A permutation π ∈ Sn is reconstructible from its
(n − k)-patterns if

deckn−k(π) = deckn−k(σ) if and only if π = σ

holds for every σ ∈ Sn.

I The problem of reconstructing a permutation from its
patterns has already been considered by several authors.

Mariana Raykova, Permutation reconstruction from
minors.

Rebecca Smith, Permutation reconstruction.

Both published in Electron. J. Combin., 2006.

Their work establishes that, for n ≥ 5, every
n-permutation is reconstructible from its
(n− 1)-deck.
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The reconstruction of a permutation from its patterns

I John Ginsburg, Determining a permutation from its set
of reductions, published in Ars Combin., 2007.

He proves that every n-permutation is also
reconstructible from its set of (n− 1)-patterns.

I What if instead we consider k > 1? Is a permutation
reconstructible from its set of (n− k)-patterns or from its
(n − k)-deck?

I Raykova and Smith: for a fixed k > 1, there exists a
natural number N such that all permutations of rank
n ≥ N are reconstructible from their (n − k)-decks.

I What is Nk , the least of those numbers N?

N1 = 5 and N2 = 6 (Smith and Raykova respectively)

k + log2 k < Nk <
k2

4
+ 2k + 4 (Raykova)
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The problem we address

I The cardinality of a deck is the sum of the multiplicities of
the elements that occur in the deck.

For example, the (5)-deck of the permutation

π = 126534

is
〈(15423)2, (12534)2, (12543)2〉

and it has cardinality 2 + 2 + 2 = 6
and
(4)-deck of the permutation

π = 126534

is
〈(1423)4, 〈(1432)4, (1234)1, (1243)5 〈(4321)1〉

and it has cardinality 4 + 4 + 1 + 5 + 1 = 15.
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Some open problems

For a fixed k , take n ≥ k2

4
+ 2k + 4.

Any permutation π in Sn is reconstructible from its
(n − k)-deck.

But...

I How can we reconstruct π?

I What if we do not need all the (n − k)-cards?

In that case what is the value of Hk(n), the smallest
number of cards needed to guarantee the reconstruction?

Clearly Hk(n) ≤
(
n
k

)
.

I And if Hk(n) is known, how can we recognise a partial
deck of a permutation in Sn among the submultisets of
cardinality Hk(n) formed by permutations in Sn−k?
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The problem we address

I For k = 1, one of the open problems posed by Ginsburg:

Can we find a non-trivial function f : {n ∈ N | n ≥ 5} → N

so that f (n) is the smallest natural number m for which

every permutation π ∈ Sn is uniquely determined by any of

its partial (n − 1)-decks of cardinality m?

11/29



The problem we address

I For k = 1, one of the open problems posed by Ginsburg:

Can we find a non-trivial function f : {n ∈ N | n ≥ 5} → N

so that f (n) is the smallest natural number m for which

every permutation π ∈ Sn is uniquely determined by any of

its partial (n − 1)-decks of cardinality m?

11/29



Searching for ...

I Cn := the largest number for which there exists two
distinct permutations with the same (n − 1)-partial deck of
cardinality Cn .

n Cn

5
(
5
4

)
− 1

6 4
7 5
8 5

From 5 ≤ n ≤ 8,

I Cn is
(

n
n−1

)
− 1 only for n = 5.

I 5 is the unique rank for which the reconstruction of any
permutation is not possible from a (proper) partial
(n − 1)-deck.

I Cn = dn/2e+ 1 and hence H(n) = Cn + 1 = dn/2e+ 2.
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Claiming H(n) ≥ dn/2e+ 2.

Take n ≥ 5,
I for n = 2m, the two distinct permutations (ιm−1 	 1)⊕ ιm
and (ιm 	 1)⊕ ιm−1 have dn/2e+ 1 common (n − 1)-cards

For m = 5:

The skew sums

ι5−1 	 1 and ι5 	 1

The direct sums

(ι4 	 1)⊕ ι5 and (ι5 	 1)⊕ ι4

The decks of these permutations admit the following common submultiset of cardinality d10/2e + 1:

〈1 2 3 4 5 6 7 8 9, (2 3 4 5 1 6 7 8 9)5〉

13/29



Claiming H(n) ≥ dn/2e+ 2.

I for n = 2m + 1, the two distinct permutations
ιm−1 ⊕ δ2 ⊕ ιm and ιm ⊕ δ2 ⊕ ιm−1 have dn/2e+ 1 common
(n − 1)-cards

For m = 5:

The permutations ι4 ⊕ δ2 ⊕ ι5 and ι5 ⊕ δ2 ⊕ ι4 have d11/2e + 1 common (11− 1)-cards

I therefore Cn ≥ dn/2e+ 1.

IConsequently, H(n) ≥ dn/2e+ 2 for all n ≥ 5.

Conjecture: H(n) := dn/2e+ 2 for n > 5.
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Proved...

Theorem 19, G. & Lehtonen 2021
For n ≥ 5, every permutation of rank n is reconstructible from
dn/2e+ 2 cards.

...making use of a fundamental result:

Ginsburg, Lemma 1(iv)

Let π ∈ Sn. If s, t ∈ [n] with s ≤ t, then π − s = π − t if and
only if π[s, t] is a monotone segment in π.
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Example: For π ∈ S7, s = 3 and t = 5 suppose that
π − s = π − t = 1 2 6 5 3 4.

Then

π = 1′ 2′ 6′ 5′ 3′ 4′ or π = 1′ 2′ 6′ 5′ 3′ 4′

where the number i ′ must be either i or i + 1.

Clearly π(5) ≥ 5 which implies π = 1 2 6′ 5′ 3 4.

Also π(3) ≥ 6 and therefore π = 1 2 6′ 5 3 4. Thus
π = 1 2 7 6 5 3 4.
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Example:

Example: For π = 1 2 6 5 3 4 and i = 2 and j = 4 we have

1 2 6 5 3 4  1 2 6 5 3  1 2 5 4 3 = π ↓ 4
1 2 5 4 3  1 5 4 3  1 4 3 2 = (π ↓ 4) ↓ (2)

1 2 6 5 3 4  1 6 5 3 4  1 5 4 2 3 = π ↓ 2
1 5 4 2 3  1 5 4 2  1 4 3 2 = (π ↓ 2) ↓ (3)
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A key idea

Theorem 19, G. & Lehtonen 2021

For n ≥ 5, every permutation of rank n is reconstructible from H(n)

cards.

Theorem’s proof

I Constructive and it can be turned into a reconstruction
algorithm.

I The key idea is to determine π−1(i) and π ↓ i , for some
i ∈ [n], from the given partial deck of π.

I From the position π−1(i) and the pattern π ↓ i it is easy
to recover π,:

π = (π ↓ i) ↑π−1(i) i .
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Example: Let τ = 3 1 2 6 4 5, p = 3 and v = 4.

The permutation τ ↑p v is the permutation we obtain from τ
by inserting the value v on position p as illustrated:

The permutation τ

v

p τ ↑3 4

Note: In some cases it is not directly possible to determine
π−1(i) and π ↓ i . Then

I we determine π−1(1), which is always possible;
I we build a (partial) deck for π ↓ 1 from the partial deck

of π;
I we apply the previous procedure aiming now to

reconstruct π ↓ 1;
I by a recursive application of the algorithm, we end up

reconstructing π.
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The reconstruction process

The starting point: n ≥ 5 and D is a given multiset of Sn−1
of cardinality H(n) which is assumed to be a partial deck of
some permutation π ∈ Sn.

IThe easiest case: all cards in D are equal, say τk = τ for all
k ∈ [H(n)].

G. and Lehtonen 2021, Lemma 7 (ii)

Thus
π = τ ↑u τ(u) if π[u, v ] is ascending

and
π = τ ↑v+1 τ(v) if π[u, v ] is descending.
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The reconstruction process: when D contains at least two

different cards

By inspection on D one of two cases must occur:

I Monotone case: there is a card of D that contains a
monotone sequence k1 k2 . . . ks such that in every card
either k1 k2 . . . ks or (k1 − 1) (k2 − 1) . . . (ks − 1) occurs.

I Non monotone case
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The reconstruction process: the monotone case
I Subcase: D has a unique maximal monotone segment

Example
D = 〈(4 7 5 8 3 2 1 6 9)3, 7 5 8 3 2 1 4 6 9, 5 7 8 3 2 1 4 6 9,
5 7 6 8 3 2 1 4 9, 5 8 6 9 3 2 1 4 7〉.

The card τ = 4 7 5 8 3 2 1 6 9 has a unique maximal monotone
segment of length m = 3 and multiplicity m.

G. and Lehtonen 2021, Proposition 8

D contains a card τ of multiplicity m ≥ 3 such that τ has a unique

maximal monotone segment τ [u, v ] = σ = k1 . . . kq of length

≥ m − 1.

If σ is descending, then π = τ ↑u (τ(u) + 1).

Then π = τ ↑5 4 = 5 8 6 9 4 3 2 1 7 10
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Example
D :=

〈(9 7 8 6 3 4 5 2 1)3, (9 8 7 4 5 6 3 2 1)2, 9 7 8 4 5 6 3 2 1, 8 9 7 4 5 6 3 2 1〉
The cards of multiplicity m ≥ 3 have more than one monotone
segment but in every card either κ = 4 5 6 or κ− := 3 4 5 is a
maximal ascending segment.

For G := {gτ | τ ∈ D}, where

gτ :=

{
(4, τ−1(4)), if κ v τ ,

(3, τ−1(3)), if κ− v τ .

we obtain

G = {(3, 5), (4, 4)}
A := {a | ∃b (a, b) ∈ G} = {3, 4}
B := {b | ∃a (a, b) ∈ G} = {4, 5}.
Take

a∗ := maxA = 4, b∗ := maxB = 5.
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Example

κ = 4 5 6 A = {3, 4} B = {4, 5}
a∗ = maxA = 4, b∗ = maxB = 5.

Since length of κ = 3 and 2 ≤ 3 ≤ 10− H(10), we apply

Proposition 12 (G. & Lehtonen 2021)

and conclude that π[u, v ] is a maximal ascending segment in π
with initial value j where

j :=

{
a∗ + 1, if |A| = 1 and H(10) ≤ a∗,

a∗, otherwise,
= 4

u :=

{
b∗ + 1, if |B | = 1 and H(n) ≤ b∗,

b∗, otherwise,
= 5

v := u + q − 1 = 5 + 3− 1 = 7.

Hence π[5, 7] = 4 5 6 is a maximal ascending segment in π.
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D := 〈(9 7 8 6 3 4 5 2 1)3, (9 8 7 4 5 6 3 2 1)2, 9 7 8 4 5 6 3 2 1, 8 9 7 4 5 6 3 2 1〉

π[5, 7] = 4 5 6 is a maximal ascending segment in π.

For each τ ′ ∈ D we define

τ ′ :=

{
τ ↓ κ, if κ v τ ,

τ ↓ κ−, if κ− v τ .

and obtain
D ′ := 〈τ ′ | τ ∈ D〉 = 〈(6 4 5 3 2 1)4, (6 5 4 3 2 1)2, (5 6 4 3 2 1)1〉

D ′ is (a partial) deck of π ↓ π[5, 7] ∈ S7,

τ := 6 4 5 3 2 1 has multiplicity 4 and

σ = τ [4, 6] = 3 2 1 is a maximal monotone segment.
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(As we did in a previous case) Apply Ginsburg’s Lemma and
Proposition 8 to π ↓ π[5, 7] ∈ S7 and D ′ and obtain

π ↓ π[5, 7] = τ ↑4 (τ(4) + 1) = (6 4 5 3 2 1) ↑4 4 = 7 5 6 4 3 2 1.

and now we can immediately reconstruct π:

π = (π ↓ π[5, 7]) ↑5 π[5, 7]

= (7 5 6 4 3 2 1) ↑5 (4 5 6)

= 10 8 9 7 4 5 6 3 2 1.
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The reconstruction process: the non monotone case
Step 1 : Determine the position p of 1 in π (and simultaneously

the position r of 2 in π).
This is done by comparing the positions of 1 and 2 in the
cards and uses Lemmas 13 and 16 (G. & Lehtonen, 2021).

Step 2 : Look for a card in the partial deck which has 1 at
position r if r < p or at position r − 1 if p < r .
One of two cases must occur:
• If such a card τ exists then it must be π ↓ 1 and then
π = τ ↑p 1.
• If no such card exists then π ↓ 1 is not in the partial deck
D.
Now the strategy is to define a partial deck of
θ := π ↓ 1 ∈ Sn−1 by removing 1 from the cards in D.
We repeat the procedure for θ and D ′, starting from
Step 1.
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For more details:

Permutation reconstruction from a few large patterns
G. & Lehtonen The Electronic Journal of Combinatorics,
28(3), 2021

Thank you!
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