Clones of compatible operations on rings Z_n

Miroslav Ploščica, Ivana Varga

Šafárik's University, Košice, Slovakia

December 19, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Consider the following problems.

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an *n*-ary operation on a ring \mathbb{R} . Can we determine if f is expressible by a polynomial? What are the properties that distinguish the class of polynomial functions?

2. Let (P, \leq) be a partially ordered set. Can we find a nice set of isotone (order preserving) operations, such that every isotone operation is a composition of functions from this set?

イロト イポト イヨト イヨト 二日

A *clone* on a set A is a set of finitary operations $A^n \rightarrow A$ $(n \ge 1)$ which contains all projections and is closed under composition.

Projections: $p_{n,i}(x_1,\ldots,x_n) = x_i$

Composition: For a *n*-ary operation f and k-ary operations g_1, \ldots, g_n we define the k-ary operation $f(g_1, \ldots, g_n)$ by

$$f(g_1,\ldots,g_n)(\mathbf{x}) = f(g_1(\mathbf{x}),\ldots,g_n(\mathbf{x}))$$

for every $\mathbf{x} = (x_1, \ldots, x_k)$.

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

1. Polynomial operations on any ring (or any other algebraic structure) form a clone.

2. Operations preserving a given partial order (or any other relation) form a clone.

We say that an operation $f: A^n \to A$ preserves a relation $\alpha \subseteq A^k$ if $(a_{11}, \ldots, a_{1k}) \in \alpha$, $(a_{21}, \ldots, a_{2k}) \in \alpha$, \ldots $(a_{n1}, \ldots, a_{nk}) \in \alpha$ implies $(f(a_{11}, \ldots, a_{n1}), f(a_{12}, \ldots, a_{n2}), \ldots, f(a_{1k}, \ldots, a_{nk})) \in \alpha$.

イロト イポト イラト イラト 一日

For a set C of operations on a set A let Inv(C) be the set of all relations on A preserved by every $f \in C$. (We call them *invariant relations of* C.)

For a set Σ of relations on a set A let $Pol(\Sigma)$ be the set of all operations on A that preserve every $\alpha \in \Sigma$. (We call them polymorphisms of Σ .)

Theorem

For every clone C on a finite set A, Pol(Inv(C)) = C.

So, on a finite set, there are two basic ways how to express a clone:

- by giving a generating set of operations;
- by giving a generating set of relations, i.e. expressing the clone as Pol(Σ).

イロト 不得下 イヨト イヨト 二日

Clones on 2-element set

Miroslav Ploščica, Ivana Varga

Clones of compatible operations on rings \mathbb{Z}_n

A congruence θ of an algebra A is an equivalence relation, which is preserved by all basic operations $f: A^n \to A$ of the algebra A, that is

$$(a_1, b_1), \ldots, (a_n, b_n) \in \theta$$

implies

$$(f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)) \in \theta.$$

A polynomial operation of an algebra A is a composition of basic operations of A and (unary) constant operations on A. Clearly, every constant operation preserves every congruence. Consequently, every polynomial operation preserves every congruence.

イロト イポト イヨト イヨト 二日

A function $A^n \to A$ on an algebra A is called *compatible* (or *congruence-preserving*) if it preserves all congruences θ of A. Clearly,

• compatible operations form a clone Comp(A);

• $\operatorname{Comp}(A)$ contains $\operatorname{P}(A)$, the clone of all polynomials of A. Notice that the clone $\operatorname{Comp}(A)$ is defined by means of invariant relations, while $\operatorname{P}(A)$ is given by a set of generators.

Algebra A is called *affine complete* if Comp(A) = P(A).

イロト 不得下 イヨト イヨト 二日

Affine completeness has been investigated for various kinds of algebras. In our talk we consider rings \mathbb{Z}_n of integers modulo n. Well-known:

Theorem

The ring \mathbb{Z}_n is affine complete if and only if n is square-free.

If n is not square-free, then we would like to investigate the interval between $P(\mathbb{Z}_n)$ and $Comp(\mathbb{Z}_n)$ in the lattice of clones. We denote this interval by I(n).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Implicitly in Remizov 1989)

Theorem

If $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ where p_1, \dots, p_k are distinct primes, then the interval I(n) is (as a lattice) isomorphic to

$$I(p_1^{\alpha_1}) \times \cdots \times I(p_k^{\alpha_k}).$$

So, in order to describe I(n), we need to describe $I(p^k)$, that is to investigate the rings \mathbb{Z}_n , where $n = p^k$ is a prime power.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$n = p^2$$

Theorem

The lattice $I(p^2)$ has two elements, that is, $Comp(\mathbb{Z}_{p^2})$ covers $P(\mathbb{Z}_{p^2})$.

(proved by Remizov 1989, Bulatov 2002, MP+IV 2021) More information:

1. The clone $\operatorname{Comp}(\mathbb{Z}_{p^2})$ is generated by polynomials and any compatible nonpolynomial operation, for instance

$$\sigma(x,y) = \begin{cases} p, \text{ if } x, y = 0\\ 0, \text{ otherwise.} \end{cases}$$

$$n = p^2$$

2. An operation on \mathbb{Z}_{p^2} (any arity) is polynomial if and only if it preserves the congruence mod p and the 4-ary relation V defined as follows.

$$(x_1, x_2, x_3, x_4) \in V$$
 if and only if
(V1) $x_1 - x_2 - x_3 + x_4 = 0;$
(V2) $x_i \equiv x_j \pmod{p}$ for every $i, j \in \{1, 2, 3, 4\}.$

Where does this relation come from?

・ 同 ト ・ ヨ ト ・ ヨ ト

If α and β are congruences of an algebra A, then $M(\alpha, \beta)_A$ is the subalgebra of A^4 generated by all 4-tuples of the form (a, a', a, a') with $(a, a') \in \alpha$ and (b, b, b', b') with $(b, b') \in \beta$. The elements of $M(\alpha, \beta)_A$ are usually considered as matrices 2×2 . The commutator $[\alpha, \beta]_A$ is defined as the smallest congruence γ of A with the property that $(x_1, x_2, x_3, x_4) \in M(\alpha, \beta)$ and $(x_1, x_2) \in \gamma$ imply $(x_3, x_4) \in \gamma$.

The relation V coincides with $M \pmod{p, \mod{p}}$ calculated in the ring \mathbb{Z}_{p^2} . Its shape shows that $[\mod{p}, \mod{p}] = 0$. This will change when we expand the type of \mathbb{Z}_{p^2} by the operation ρ . (The above commutator will be equal to \mod{p} .)

イロト 不得 トイヨト イヨト 三日

$$n = p^3$$

The main aim of this talk is to describe all clones in the interval $I(p^3)$, both by means of generators and invariant relations.

The clone generated by the ring polynomials and nonpolynomial compatible operations f_1, \ldots, f_k will be denoted $C(f_1, \ldots, f_k)$.

(日)

Lattice $I(p^3)$

2

The *i*-ary operation ξ_i on \mathbb{Z}_{p^3} is defined by

$$\xi_i(\mathbf{x}) = \begin{cases} p^2 k_1 k_2 \dots k_i, & \text{if } \mathbf{x} = (k_1 p, \dots, k_i p) & \text{for some } k_1, \dots, k_i \\ 0, & \text{otherwise.} \end{cases}$$

The operation π is unary:

$$\pi(x) = \begin{cases} pk^p, \text{ if } x = kp \text{ for some } k \in \{0, \dots, p^2 - 1\} \\ 0, \text{ otherwise.} \end{cases}$$

イロト イポト イヨト イヨト 二日

Operations in our picture

The remaining operations $\psi,~\rho,~\tau$ and φ are binary, defined are as follows:

$$\psi(x,y) = \begin{cases} pk^{p}l^{p}, \text{ if } x = kp, y = lp \text{ for some } k, l \in \{0, \dots, p^{2} - 1\}\\ 0, \text{ otherwise.} \end{cases}$$

$$\rho(x,y) = \begin{cases} pk^p(l^p-l), \text{ if } x = kp, y = lp \text{ for some } k, l \in \{0,\ldots,p^2-1\}\\ 0, \text{ otherwise.} \end{cases}$$

$$\varphi(x,y) = \begin{cases} klp^2, \text{ if } x = kp^2, y = lp^2 \text{ for some } k, l \in \{0, \dots, p-1\} \\ 0, \text{ otherwise.} \end{cases}$$

$$\tau(x,y) = \begin{cases} klp, \text{ if } x = kp, y = lp \text{ for some } k, l \in \{0, \dots, p^2 - 1\} \\ 0, \text{ otherwise.} \end{cases}$$

イロト 不得下 イヨト イヨト 二日

Recall that the congruences of the ring \mathbb{Z}_{p^3} form a 4-element chain $0 < \alpha < \beta < 1$, where $\alpha = \mod p^2$, $\beta = \mod p$.

The clones between N and $\operatorname{Comp}(\mathbb{Z}_{p^3})$ can be distinguished by relations $M(\alpha, \alpha)$, $M(\beta, \alpha)$ and $M(\beta, \beta)$ computed in the ring \mathbb{Z}_{p^3} . These are 4-ary relations and their explicit description is as follows.

Lemma

$$(x_1, x_2, x_3, x_4) \in M(\alpha, \alpha)$$
 iff
(S1) $x_1 - x_2 - x_3 + x_4 = 0;$
(S2) $x_i \equiv x_j \pmod{p^2}$ for every $i, j \in \{1, 2, 3, 4\}.$

イロト イポト イヨト イヨト 二日

Lemma

$$\begin{array}{l} (x_1, x_2, x_3, x_4) \in M(\beta, \alpha) \ \textit{iff} \\ (\mathsf{T1}) \ x_1 - x_2 - x_3 + x_4 = 0; \\ (\mathsf{T2}) \ x_1 \equiv x_3 (\bmod{p^2}); \\ (\mathsf{T3}) \ x_i \equiv x_j \ (\bmod{p}) \ \textit{for every } i, j \in \{1, 2, 3, 4\}. \end{array}$$

Lemma

$$(x_1, x_2, x_3, x_4) \in M(\beta, \beta)$$
 iff
(U1) $x_1 - x_2 - x_3 + x_4 \equiv 0 \pmod{p^2};$
(U2) $x_i \equiv x_j \pmod{p}$ for every $i, j \in \{1, 2, 3, 4\}.$

Theorem

- $M(\alpha, \alpha)$ is preserved by τ and not preserved by φ ;
- $M(\beta, \alpha)$ is preserved by ψ and not preserved by ρ ;
- $M(\beta,\beta)$ is preserved by φ and not preserved by ψ ;

イロト イポト イヨト イヨト 二日

Theorem

- $f \in \text{Comp}(\mathbb{Z}_{p^3})$ iff it preserves congruences;
- $f \in C(\tau)$ iff it preserves congruences and $M(\alpha, \alpha)$;
- $f \in C(\psi)$ iff it preserves congruences and $M(\beta, \alpha)$;
- $f \in C(\varphi)$ iff it preserves congruences and $M(\beta, \beta)$;
- $f \in C(\rho)$ iff it preserves congruences, $M(\alpha, \alpha)$ and $M(\beta, \beta)$;
- $f \in N$ iff it preserves congruences, $M(\beta, \alpha)$ and $M(\beta, \beta)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $C \in I(p^3)$.

- $[\alpha, \alpha]_C = 0$ iff $C \subseteq C(\tau)$;
- $[\beta, \alpha]_C = 0$ iff $C \subseteq C(\psi)$;
- $[\beta,\beta]_C = \alpha$ iff $C \subseteq C(\varphi)$.

- 人 同 ト 人 ヨ ト - - - ヨ

The clones between $P(\mathbb{Z}_{p^3})$ and N have the same values of commutators. To distinguish them we can use the concept of *n*-ary commutator, introduced by Bulatov (2001).

For an integer $n \ge 3$ let P_n be the power set of $\{1, \ldots, n\}$. We use P_n for indexing 2^n -ary relations.

Let $\alpha_1, \ldots, \alpha_n$ be congruences of an algebra A. Let $M(\alpha_1, \ldots, \alpha_n)_A$ be the subalgebra of A^{2^n} generated by all 2^n -tuples $(\mathbf{u}(i, a, a')_J \mid J \in P_n)$, where $i \in \{1, \ldots, n\}$, $(a, a') \in \alpha_i$ and

$$\mathbf{u}(i,a,a')_J = \begin{cases} a, \text{ if } i \in J\\ a', \text{ if } i \notin J. \end{cases}$$

イロト 不得下 イヨト イヨト 二日

The *n*-ary commutator $[\alpha_1, \ldots, \alpha_n]_A$ is defined as the smallest congruence on A satisfying for every $\mathbf{x} = (x_J \mid J \in P_n) \in M(\alpha_1, \ldots, \alpha_n)_A$ the implication $(x_J, x_{J \cup \{n\}}) \in \gamma$ for every $J \subsetneq \{1, \ldots, n-1\}$ $\implies (x_{\{1, \ldots, n-1\}}, x_{\{1, \ldots, n\}}) \in \gamma.$

(Bulatov has not defined the relation $M(\alpha_1, \ldots, \alpha_n)$ explicitly. It was investigated later by Shaw(2014) and Opršal (2016).)

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

Relations R_n

We consider the 2^n -ary relation R_n on \mathbb{Z}_{p^3} , such that $\mathbf{x} = (x_J \mid J \in P_n) \in R_n$ if and only if the following conditions are satisfied:

(R1)
$$\sum_{K \in P_n} (-1)^{|K|} x_K \equiv 0.$$

(R2)
$$\sum_{K \subseteq J} (-1)^{|K|} x_K \equiv 0 \pmod{p^2} \text{ for every } J \in P_n, |J| \ge 2;$$

(R3) $x_J \equiv x_{\emptyset} \pmod{p}$ for every $J \in P_n;$

Lemma

The relation R_n coincides with $M(\beta, \beta, \ldots, \beta)_{C(\xi_{n-1})}$ (n occurences of β). (Computed in the ring \mathbb{Z}_{p^3} enhanced with the operation ξ_{n-1} .)

イロト イポト イヨト イヨト 二日

Theorem

The 2^n -ary relation R_n is preserved by ξ_{n-1} and π and not preserved by ξ_n .

Consequence:

Theorem

 $f \in C(\xi_{n-1}, \pi)$ iff it preserves congruences and R_n .

Consequence:

Theorem

- Let $n \leq p$. The *n*-ary commutator $[\beta, \ldots, \beta]_C$ is equal to 0 iff $C \subseteq C(\xi_{n-1})$.
- Let n > p. The *n*-ary commutator $[\beta, \ldots, \beta]_C$ is equal to 0 iff $C \subseteq C(\xi_{n-1}, \pi)$.

(日)

It remains to distinguish $C(\xi_n)$ and $C(\xi_n, \pi)$. We define the 4-ary relation Q as follows:

 $(x_1,x_2,x_3,x_4)\in Q$ if and only if the following conditions are satisfied:

(Q1) $x_1 - px_2 - x_3 + px_4 = 0;$ (Q2) $x_1 \equiv x_3 \pmod{p^2};$ (Q3) $x_i \equiv x_j \pmod{p}$ for every $i, j \in \{1, \dots, 4\}.$ It is a relation connected with the similarity of the rings \mathbb{Z}_{p^3} and \mathbb{Z}_{p^2} in the sense of Commutator theory.

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うのの

Theorem

The relation Q is preserved by ξ_n for every n and not preserved by π .

Consequence:

Theorem

 $f \in C(\xi_{n-1})$ iff it preserves congruences, R_n and Q. (n > p)

Especially:

Theorem

- Let p > 2. Then $f \in P(\mathbb{Z}_{p^3})$ iff it preserves congruences and R_3 .
- Let p = 2. Then $f \in P(\mathbb{Z}_{p^3})$ iff it preserves congruences, R_3 , and Q.

イロト 不得下 イヨト イヨト 二日

Theorem

 $I(p^{k+1})$ is isomorphic to the interval between $E_2(\mathbb{Z}_{p^k})$ and $\operatorname{Comp}(\mathbb{Z}_{p^k})$, where the clone $E_2(\mathbb{Z}_{p^k})$ is generated by the group polynomials (i.e. linear functions) and the operation h(x, y) = pxy.

For instance, the description of $I(p^4)$ requires a study of an interval in the lattice of clones on \mathbb{Z}_{p^3} whose upper part is $I(p^3)$ described in this talk.

A slightly more general problem is

Problem

Describe all extensions of the clone of all linear functions on \mathbb{Z}_{p^3} .

Denote

$$r_n = x_1 x_2 \dots x_n,$$

$$s_n = x_1 x_2 \dots x_n (x_1 + x_2 + \dots + x_n),$$

$$t_n = r_n + s_n.$$

Some clones on \mathbb{Z}_8

Miroslav Ploščica, Ivana Varga Clones of compatible operations on rings Z_n

Some clones on \mathbb{Z}_8

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Thank you for attention.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三