Clones of compatible operations on rings Z_{n}

Miroslav Ploščica, Ivana Varga

Šafárik's University, Košice, Slovakia
December 19, 2023

Motivation

Consider the following problems.

1. Let $f: R^{n} \rightarrow R$ be an n-ary operation on a ring R. Can we determine if f is expressible by a polynomial? What are the properties that distinguish the class of polynomial functions?
2. Let (P, \leq) be a partially ordered set. Can we find a nice set of isotone (order preserving) operations, such that every isotone operation is a composition of functions from this set?

Clones

A clone on a set A is a set of finitary operations $A^{n} \rightarrow A(n \geq 1)$ which contains all projections and is closed under composition.

Projections: $p_{n, i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$
Composition: For a n-ary operation f and k-ary operations g_{1}, \ldots, g_{n} we define the k-ary operation $f\left(g_{1}, \ldots, g_{n}\right)$ by

$$
f\left(g_{1}, \ldots, g_{n}\right)(\mathbf{x})=f\left(g_{1}(\mathbf{x}), \ldots, g_{n}(\mathbf{x})\right)
$$

for every $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$.

Examples

1. Polynomial operations on any ring (or any other algebraic structure) form a clone.
2. Operations preserving a given partial order (or any other relation) form a clone.

We say that an operation $f: A^{n} \rightarrow A$ preserves a relation $\alpha \subseteq A^{k}$ if
$\left(a_{11}, \ldots, a_{1 k}\right) \in \alpha$, $\left(a_{21}, \ldots, a_{2 k}\right) \in \alpha$,
$\left(a_{n 1}, \ldots, a_{n k}\right) \in \alpha$
implies
$\left(f\left(a_{11}, \ldots, a_{n 1}\right), f\left(a_{12}, \ldots, a_{n 2}\right), \ldots, f\left(a_{1 k}, \ldots, a_{n k}\right)\right) \in \alpha$.

Pol-Inv correspondence

For a set C of operations on a set A let $\operatorname{lnv}(C)$ be the set of all relations on A preserved by every $f \in C$. (We call them invariant relations of C.)

For a set Σ of relations on a set A let $\operatorname{Pol}(\Sigma)$ be the set of all operations on A that preserve every $\alpha \in \Sigma$. (We call them polymorphisms of Σ.)

Theorem

For every clone C on a finite set $A, \operatorname{Pol}(\operatorname{lnv}(C))=C$.
So, on a finite set, there are two basic ways how to express a clone:
(1) by giving a generating set of operations;
(2) by giving a generating set of relations, i.e. expressing the clone as $\operatorname{Pol}(\Sigma)$.

Clones on 2-element set

Congruences and polynomials

A congruence θ of an algebra A is an equivalence relation, which is preserved by all basic operations $f: A^{n} \rightarrow A$ of the algebra A, that is

$$
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \theta
$$

implies

$$
\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in \theta
$$

A polynomial operation of an algebra A is a composition of basic operations of A and (unary) constant operations on A. Clearly, every constant operation preserves every congruence. Consequently, every polynomial operation preserves every congruence.

Compatible operations on algebras

A function $A^{n} \rightarrow A$ on an algebra A is called compatible (or congruence-preserving) if it preserves all congruences θ of A. Clearly,

- compatible operations form a clone $\operatorname{Comp}(A)$;
- $\operatorname{Comp}(A)$ contains $\mathrm{P}(A)$, the clone of all polynomials of A. Notice that the clone $\operatorname{Comp}(A)$ is defined by means of invariant relations, while $\mathrm{P}(A)$ is given by a set of generators.

Algebra A is called affine complete if $\operatorname{Comp}(A)=\mathrm{P}(A)$.

Affine completeness

Affine completeness has been investigated for various kinds of algebras. In our talk we consider rings \mathbb{Z}_{n} of integers modulo n. Well-known:

Theorem

The ring \mathbb{Z}_{n} is affine complete if and only if n is square-free.
If n is not square-free, then we would like to investigate the interval between $\mathrm{P}\left(\mathbb{Z}_{n}\right)$ and $\operatorname{Comp}\left(\mathbb{Z}_{n}\right)$ in the lattice of clones. We denote this interval by $I(n)$.

Reduction to prime power

(Implicitly in Remizov 1989)

Theorem

If $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes, then the interval $I(n)$ is (as a lattice) isomorphic to

$$
I\left(p_{1}^{\alpha_{1}}\right) \times \cdots \times I\left(p_{k}^{\alpha_{k}}\right)
$$

So, in order to describe $I(n)$, we need to describe $I\left(p^{k}\right)$, that is to investigate the rings \mathbb{Z}_{n}, where $n=p^{k}$ is a prime power.

$$
n=p^{2}
$$

Theorem

The lattice $I\left(p^{2}\right)$ has two elements, that is, $\operatorname{Comp}\left(\mathbb{Z}_{p^{2}}\right)$ covers $\mathrm{P}\left(\mathbb{Z}_{p^{2}}\right)$.
(proved by Remizov 1989, Bulatov 2002, MP+IV 2021)
More information:

1. The clone $\operatorname{Comp}\left(\mathbb{Z}_{p^{2}}\right)$ is generated by polynomials and any compatible nonpolynomial operation, for instance

$$
\sigma(x, y)= \begin{cases}p, & \text { if } x, y=0 \\ 0, & \text { otherwise }\end{cases}
$$

$n=p^{2}$

2. An operation on $\mathbb{Z}_{p^{2}}$ (any arity) is polynomial if and only if it preserves the congruence mod p and the 4 -ary relation V defined as follows.
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V$ if and only if
(V1) $x_{1}-x_{2}-x_{3}+x_{4}=0$;
(V2) $x_{i} \equiv x_{j}(\bmod p)$ for every $i, j \in\{1,2,3,4\}$.

Where does this relation come from?

Commutators

If α and β are congruences of an algebra A, then $M(\alpha, \beta)_{A}$ is the subalgebra of A^{4} generated by all 4-tuples of the form ($a, a^{\prime}, a, a^{\prime}$) with $\left(a, a^{\prime}\right) \in \alpha$ and $\left(b, b, b^{\prime}, b^{\prime}\right)$ with $\left(b, b^{\prime}\right) \in \beta$. The elements of $M(\alpha, \beta)_{A}$ are usually considered as matrices 2×2. The commutator $[\alpha, \beta]_{A}$ is defined as the smallest congruence γ of A with the property that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M(\alpha, \beta)$ and $\left(x_{1}, x_{2}\right) \in \gamma$ imply $\left(x_{3}, x_{4}\right) \in \gamma$.

The relation V coincides with $M(\bmod p, \bmod p)$ calculated in the ring $\mathbb{Z}_{p^{2}}$. Its shape shows that $[\bmod p, \bmod p]=0$. This will change when we expand the type of $\mathbb{Z}_{p^{2}}$ by the operation ρ. (The above commutator will be equal to $\bmod p$.)

$n=p^{3}$

The main aim of this talk is to describe all clones in the interval $I\left(p^{3}\right)$, both by means of generators and invariant relations.

The clone generated by the ring polynomials and nonpolynomial compatible operations f_{1}, \ldots, f_{k} will be denoted $C\left(f_{1}, \ldots, f_{k}\right)$.

Lattice $I\left(p^{3}\right)$

Operations in our picture

The i-ary operation ξ_{i} on $\mathbb{Z}_{p^{3}}$ is defined by
$\xi_{i}(\mathbf{x})=\left\{\begin{array}{l}p^{2} k_{1} k_{2} \ldots k_{i}, \text { if } \mathbf{x}=\left(k_{1} p, \ldots, k_{i} p\right) \text { for some } k_{1}, \ldots, k_{i} \\ 0, \text { otherwise } .\end{array}\right.$
The operation π is unary:

$$
\pi(x)=\left\{\begin{array}{l}
p k^{p}, \text { if } x=k p \text { for some } k \in\left\{0, \ldots, p^{2}-1\right\} \\
0, \text { otherwise }
\end{array}\right.
$$

Operations in our picture

The remaining operations ψ, ρ, τ and φ are binary, defined are as follows:
$\psi(x, y)=\left\{\begin{array}{l}p k^{p} l^{p}, \text { if } x=k p, y=l p \text { for some } k, l \in\left\{0, \ldots, p^{2}-1\right\} \\ 0, \text { otherwise } .\end{array}\right.$
$\rho(x, y)=\left\{\begin{array}{l}p k^{p}\left(l^{p}-l\right), \text { if } x=k p, y=l p \text { for some } k, l \in\left\{0, \ldots, p^{2}-1\right\} \\ 0, \text { otherwise. }\end{array}\right.$
$\varphi(x, y)=\left\{\begin{array}{l}k l p^{2}, \text { if } x=k p^{2}, y=l p^{2} \text { for some } k, l \in\{0, \ldots, p-1\} \\ 0, \text { otherwise } .\end{array}\right.$
$\tau(x, y)=\left\{\begin{array}{l}k l p, \text { if } x=k p, y=l p \text { for some } k, l \in\left\{0, \ldots, p^{2}-1\right\} \\ 0, \text { otherwise } .\end{array}\right.$

Upper part

Recall that the congruences of the ring $\mathbb{Z}_{p^{3}}$ form a 4-element chain $0<\alpha<\beta<1$, where $\alpha=\bmod p^{2}, \beta=\bmod p$.

The clones between N and $\operatorname{Comp}\left(\mathbb{Z}_{p^{3}}\right)$ can be distinguished by relations $M(\alpha, \alpha), M(\beta, \alpha)$ and $M(\beta, \beta)$ computed in the ring $\mathbb{Z}_{p^{3}}$. These are 4 -ary relations and their explicit description is as follows.

Lemma

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M(\alpha, \alpha)$ iff
(S1) $x_{1}-x_{2}-x_{3}+x_{4}=0$;
(S2) $x_{i} \equiv x_{j}\left(\bmod p^{2}\right)$ for every $i, j \in\{1,2,3,4\}$.

Upper part

Lemma

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M(\beta, \alpha)$ iff
(T1) $x_{1}-x_{2}-x_{3}+x_{4}=0$;
(T2) $x_{1} \equiv x_{3}\left(\bmod p^{2}\right)$;
(T3) $x_{i} \equiv x_{j}(\bmod p)$ for every $i, j \in\{1,2,3,4\}$.

Lemma

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M(\beta, \beta)$ iff
(U1) $x_{1}-x_{2}-x_{3}+x_{4} \equiv 0\left(\bmod p^{2}\right)$;
(U2) $x_{i} \equiv x_{j}(\bmod p)$ for every $i, j \in\{1,2,3,4\}$.

Preservation results

Theorem

- $M(\alpha, \alpha)$ is preserved by τ and not preserved by φ;
- $M(\beta, \alpha)$ is preserved by ψ and not preserved by ρ;
- $M(\beta, \beta)$ is preserved by φ and not preserved by ψ;

Relational descriptions

Theorem

- $f \in \operatorname{Comp}\left(\mathbb{Z}_{p^{3}}\right)$ iff it preserves congruences;
- $f \in C(\tau)$ iff it preserves congruences and $M(\alpha, \alpha)$;
- $f \in C(\psi)$ iff it preserves congruences and $M(\beta, \alpha)$;
- $f \in C(\varphi)$ iff it preserves congruences and $M(\beta, \beta)$;
- $f \in C(\rho)$ iff it preserves congruences, $M(\alpha, \alpha)$ and $M(\beta, \beta)$;
- $f \in N$ iff it preserves congruences, $M(\beta, \alpha)$ and $M(\beta, \beta)$.

Consequences for commutators

Let $C \in I\left(p^{3}\right)$.

- $[\alpha, \alpha]_{C}=0$ iff $C \subseteq C(\tau)$;
- $[\beta, \alpha]_{C}=0$ iff $C \subseteq C(\psi)$;
- $[\beta, \beta]_{C}=\alpha$ iff $C \subseteq C(\varphi)$.

Lower part

The clones between $P\left(\mathbb{Z}_{p^{3}}\right)$ and N have the same values of commutators. To distinguish them we can use the concept of n-ary commutator, introduced by Bulatov (2001).
For an integer $n \geq 3$ let P_{n} be the power set of $\{1, \ldots, n\}$. We use P_{n} for indexing 2^{n}-ary relations.
Let $\alpha_{1}, \ldots, \alpha_{n}$ be congruences of an algebra A. Let $M\left(\alpha_{1}, \ldots, \alpha_{n}\right)_{A}$ be the subalgebra of $A^{2^{n}}$ generated by all 2^{n}-tuples $\left(\mathbf{u}\left(i, a, a^{\prime}\right)_{J} \mid J \in P_{n}\right)$, where $i \in\{1, \ldots, n\},\left(a, a^{\prime}\right) \in \alpha_{i}$ and

$$
\mathbf{u}\left(i, a, a^{\prime}\right)_{J}= \begin{cases}a, & \text { if } i \in J \\ a^{\prime}, & \text { if } i \notin J\end{cases}
$$

n-ary commutators

The n-ary commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]_{A}$ is defined as the smallest congruence on A satisfying for every $\mathbf{x}=\left(x_{J} \mid J \in P_{n}\right) \in M\left(\alpha_{1}, \ldots, \alpha_{n}\right)_{A}$ the implication

$$
\begin{gathered}
\left(x_{J}, x_{J \cup\{n\}}\right) \in \gamma \text { for every } J \subsetneq\{1, \ldots, n-1\} \\
\Longrightarrow \quad\left(x_{\{1, \ldots, n-1\}}, x_{\{1, \ldots, n\}}\right) \in \gamma
\end{gathered}
$$

(Bulatov has not defined the relation $M\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ explicitly. It was investigated later by Shaw(2014) and Opršal (2016).)

Relations R_{n}

We consider the 2^{n}-ary relation R_{n} on $\mathbb{Z}_{p^{3}}$, such that $\mathbf{x}=\left(x_{J} \mid J \in P_{n}\right) \in R_{n}$ if and only if the following conditions are satisfied:
(R1) $\sum_{K \in P_{n}}(-1)^{|K|} x_{K}=0$.
(R2) $\sum_{K \subseteq J}(-1)^{|K|} x_{K} \equiv 0\left(\bmod p^{2}\right)$ for every $J \in P_{n},|J| \geq 2$;
(R3) $x_{J} \equiv x_{\emptyset}(\bmod p)$ for every $J \in P_{n}$;

Lemma

The relation R_{n} coincides with $M(\beta, \beta, \ldots, \beta)_{C\left(\xi_{n-1}\right)}$ (n occurences of β). (Computed in the ring $\mathbb{Z}_{p^{3}}$ enhanced with the operation ξ_{n-1}.)

Preserving R_{n}

Theorem

The 2^{n}-ary relation R_{n} is preserved by ξ_{n-1} and π and not preserved by ξ_{n}.

Consequence:

Theorem

$f \in C\left(\xi_{n-1}, \pi\right)$ iff it preserves congruences and R_{n}.
Consequence:

Theorem

- Let $n \leq p$. The n-ary commutator $[\beta, \ldots, \beta]_{C}$ is equal to 0 iff $C \subseteq C\left(\xi_{n-1}\right)$.
- Let $n>p$. The n-ary commutator $[\beta, \ldots, \beta]_{C}$ is equal to 0 iff $C \subseteq C\left(\xi_{n-1}, \pi\right)$.

Similarity of $\mathbb{Z}_{p^{3}}$ and $\mathbb{Z}_{p^{2}}$

It remains to distinguish $C\left(\xi_{n}\right)$ and $C\left(\xi_{n}, \pi\right)$. We define the 4 -ary relation Q as follows:
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in Q$ if and only if the following conditions are satisfied:
(Q1) $x_{1}-p x_{2}-x_{3}+p x_{4}=0$;
(Q2) $x_{1} \equiv x_{3}\left(\bmod p^{2}\right)$;
(Q3) $x_{i} \equiv x_{j}(\bmod p)$ for every $i, j \in\{1, \ldots, 4\}$.
It is a relation connected with the similarity of the rings $\mathbb{Z}_{p^{3}}$ and $\mathbb{Z}_{p^{2}}$ in the sense of Commutator theory.

Preserving Q

Theorem

The relation Q is preserved by ξ_{n} for every n and not preserved by π.

Consequence:

Theorem

$f \in C\left(\xi_{n-1}\right)$ iff it preserves congruences, R_{n} and $Q .(n>p)$
Especially:

Theorem

- Let $p>2$. Then $f \in P\left(\mathbb{Z}_{p^{3}}\right)$ iff it preserves congruences and R_{3}.
- Let $p=2$. Then $f \in P\left(\mathbb{Z}_{p^{3}}\right)$ iff it preserves congruences, R_{3}, and Q.

Reduction

Theorem

$I\left(p^{k+1}\right)$ is isomorphic to the interval between $E_{2}\left(\mathbb{Z}_{p^{k}}\right)$ and $\operatorname{Comp}\left(\mathbb{Z}_{p^{k}}\right)$, where the clone $E_{2}\left(\mathbb{Z}_{p^{k}}\right)$ is generated by the group polynomials (i.e. linear functions) and the operation $h(x, y)=p x y$.

For instance, the description of $I\left(p^{4}\right)$ requires a study of an interval in the lattice of clones on $\mathbb{Z}_{p^{3}}$ whose upper part is $I\left(p^{3}\right)$ descibed in this talk.
A slightly more general problem is

Problem

Describe all extensions of the clone of all linear functions on $\mathbb{Z}_{p^{3}}$.

Some clones on \mathbb{Z}_{8}

Denote

$$
\begin{gathered}
r_{n}=x_{1} x_{2} \ldots x_{n} \\
s_{n}=x_{1} x_{2} \ldots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right) \\
t_{n}=r_{n}+s_{n}
\end{gathered}
$$

Some clones on \mathbb{Z}_{8}

Some clones on \mathbb{Z}_{8}

Thanks

Thank you for attention.

Clones of compatible operations on rings Z_{n}

